A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Log-log growth of channel capacity for nondispersive nonlinear optical fiber channel in intermediate power range: Extension of the model. | LitMetric

In our previous paper [Terekhov et al., Phys. Rev. E 95, 062133 (2017)2470-004510.1103/PhysRevE.95.062133] we considered the optical channel modeled by the nonlinear Schrödinger equation with zero dispersion and additive Gaussian noise. We found per-sample channel capacity for this model. In the present paper we extend the per-sample channel model by introducing the initial signal dependence on time and the output signal detection procedure. The proposed model is a closer approximation of the realistic communications link than the per-sample model where there is no dependence of the initial signal on time. For the proposed model we found the correlators of the output signal both analytically and numerically. Using these correlators we built the conditional probability density function. Then we calculated an entropy of the output signal, a conditional entropy, and the mutual information. Maximizing the mutual information we found the optimal input signal distribution, channel capacity, and their dependence on the shape of the initial signal in the time domain for the intermediate power range.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.012133DOI Listing

Publication Analysis

Top Keywords

channel capacity
12
initial signal
12
output signal
12
intermediate power
8
power range
8
per-sample channel
8
proposed model
8
signal time
8
signal
7
channel
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!