Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent advances in experimental techniques for complex systems and the corresponding theoretical findings show that in many cases random parametrization of the diffusion coefficients gives adequate descriptions of the observed fractional dynamics. In this paper we introduce two statistical methods which can be effectively applied to analyze and estimate parameters of superstatistical fractional Brownian motion with random scale parameter. The first method is based on the analysis of the increments of the process, the second one takes advantage of the variation of the trajectories of the process. We prove the effectiveness of the methods using simulated data. Also, we apply it to the experimental data describing random motion of individual molecules inside the cell of E.coli. We show that fractional Brownian motion with Weibull-distributed diffusion coefficient gives adequate description of this experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.012143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!