We consider signed networks in which connections or edges can be either positive (friendship, trust, alliance) or negative (dislike, distrust, conflict). Early literature in graph theory theorized that such networks should display "structural balance," meaning that certain configurations of positive and negative edges are favored and others are disfavored. Here we propose two measures of balance in signed networks based on the established notions of weak and strong balance, and we compare their performance on a range of tasks with each other and with previously proposed measures. In particular, we ask whether real-world signed networks are significantly balanced by these measures compared to an appropriate null model, finding that indeed they are, by all the measures studied. We also test our ability to predict unknown signs in otherwise known networks by maximizing balance. In a series of cross-validation tests we find that our measures are able to predict signs substantially better than chance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.012320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!