The effects of thermal annealing on the electrical properties of randomly oriented ZnO-coated nanospring ensembles were extensively investigated through AC impedance spectroscopy. Annealing the nanospring mats for an hour at 873 K in air showed significant change in ZnO morphology, reduced electrical conductivity due to the presence of grain boundaries, decreased apparent donor concentration, and faster decay of sub-band gap photocurrent. The role of the nanospring-nanospring junctions in the conduction of carriers in the ensemble was also examined, as well as evaluation of their responsiveness to thermal and optical stimulations. This work identifies the effects of heat treatment in the presence of air on the electrical properties of the nanospring ensembles, which are related to the mesoscopic morphology and interconnect within the ensemble and the properties of the ZnO coating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab087c | DOI Listing |
Nanotechnology
January 2021
Department of Physics, Oklahoma State University, Stillwater, OK 74074, United States of America.
The electrical and optoelectronic properties of nanometer-sized ZnO structures are highly influenced by its native point defects. Understanding and controlling these defects are essential for the development of high-performance ZnO-based devices. Here, an electrical device consisting of a polycrystalline ZnO-coated silica nanospring was fabricated and used to characterize the electrical and photoconductive properties of the ZnO layer using near-UV (405 nm) and sub-bandgap (532 and 633 nm) excitation sources.
View Article and Find Full Text PDFNanotechnology
June 2019
Department of Physics, Oklahoma State University, Stillwater, OK 74078, United States of America.
The effects of thermal annealing on the electrical properties of randomly oriented ZnO-coated nanospring ensembles were extensively investigated through AC impedance spectroscopy. Annealing the nanospring mats for an hour at 873 K in air showed significant change in ZnO morphology, reduced electrical conductivity due to the presence of grain boundaries, decreased apparent donor concentration, and faster decay of sub-band gap photocurrent. The role of the nanospring-nanospring junctions in the conduction of carriers in the ensemble was also examined, as well as evaluation of their responsiveness to thermal and optical stimulations.
View Article and Find Full Text PDFMaterials (Basel)
January 2019
Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA.
The effect of UV illumination on the room temperature electrical detection of ammonium nitrate vapor was examined. The sensor consists of a self-assembled ensemble of silica nanosprings coated with zinc oxide. UV illumination mitigates the baseline drift of the resistance relative to operation under dark conditions.
View Article and Find Full Text PDFACS Sens
November 2018
Department of Physics , Oklahoma State University, Stillwater , Oklahoma 74078 , United States.
Ammonium nitrate is an explosive agent that has a very low vapor pressure, which makes airborne detection very challenging. Detection of ammonium nitrate vapor has been achieved by using silica nanospring mats coated with a thin semiconducting layer of zinc oxide. The sensor was operated at room temperature and under ambient conditions in air.
View Article and Find Full Text PDFSensors (Basel)
June 2015
Department of Physics, University of Idaho, Moscow, ID 83844, USA.
A significant improvement of the response characteristics of a redox chemical gas sensor (chemiresistor) constructed with a single ZnO coated silica nanospring has been achieved with the technique of lock-in signal amplification. The comparison of DC and analog lock-in amplifier (LIA) AC measurements of the electrical sensor response to toluene vapor, at the ppm level, has been conducted. When operated in the DC detection mode, the sensor exhibits a relatively high sensitivity to the analyte vapor, as well as a low detection limit at the 10 ppm level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!