Infants differentially update their internal models of a dynamic environment.

Cognition

Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, the Netherlands.

Published: May 2019

Unexpected events provide us with opportunities for learning about what to expect from the world around us. Using a saccadic-planning paradigm, we investigated whether and how infants and adults represent the statistics of a changing environment (i.e. build an internal model of the environment). Participants observed differently colored bees that appeared at an unexpected location every few trials. The color cues indicated whether the subsequent bees would appear at this new location (i.e. update trials) or at the same location as previously (i.e. no-update trials). Infants learned the predictive value of the color cues and updated their internal models when necessary. Unlike infants, adults had a tendency to update their models each time they observed a change in the structure. We argue that infants are open to learning from current evidence due to being less influenced by their prior knowledge. This is an advantageous learning strategy to form accurate representations in dynamic environments, which is fundamental for successful adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cognition.2019.02.004DOI Listing

Publication Analysis

Top Keywords

internal models
8
infants adults
8
color cues
8
infants
5
infants differentially
4
differentially update
4
update internal
4
models dynamic
4
dynamic environment
4
environment unexpected
4

Similar Publications

Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA.

Viruses

December 2024

The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA.

View Article and Find Full Text PDF

Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis.

Viruses

November 2024

Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.

View Article and Find Full Text PDF

Accurately predicting tool wear during the machining process not only saves machining time and improves efficiency but also ensures the production of good-quality parts and automation. This paper proposes a combined variational mode decomposition (VMD) and back propagation (BP) neural network model (VMD-BP), which maps spindle power to tool wear. The model is trained using both historical and real-time data.

View Article and Find Full Text PDF

Device simulation plays a crucial role in complementing experimental device characterisation by enabling deeper understanding of internal physical processes. However, for simulations to be trusted, experimental validation is essential to confirm the accuracy of the conclusions drawn. In the framework of semiconductor detector characterisation, one powerful tool for such validation is the Two Photon Absorption-Transient Current Technique (TPA-TCT), which allows for highly precise, three-dimensional spatially-resolved characterisation of semiconductor detectors.

View Article and Find Full Text PDF

Consumer-grade EEG devices, such as the InteraXon Muse 2 headband, present a promising opportunity to enhance the accessibility and inclusivity of neuroscience research. However, their effectiveness in capturing language-related ERP components, such as the N400, remains underexplored. This study thus aimed to investigate the feasibility of using the Muse 2 to measure the N400 effect in a semantic relatedness judgment task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!