Ca/calmodulin-dependent protein kinase II (CaMKII) plays an important role in the cardiovascular system. However, the potential protective role of inhibitor 1 of protein phosphatase 1 (I1PP1), which is able to regulate CaMKII, in high glucose-induced cardiomyocytes injury remains unknown. In the present study, cardiomyocytes were transfected with I1PP1 adenovirus to inhibit protein phosphatase 1 (PP1) expression. After the cardiomyocytes were subjected to high glucose stimulation for 48 h, quantitative real-time PCR was used to detect CaMKIIδ alternative splicing. Lactate dehydrogenase (LDH) release and adenosine triphosphate (ATP) level were measured to assess cell damage and energy metabolism respectively. CaMKII activity was represented as phospholamban (PLB) phosphorylation, CaMKII phosphorylation (p-CaMKII) and oxidation (ox-CaMKII). Dihydroethidium (DHE), MitoSOX and JC-1 staining were used to assess oxidative stress and mitochondrial membrane potential. Necroptosis was evaluated by receptor interacting protein kinase 3 (RIPK3) expression, TUNEL and cleaved-caspase 3 levels. RIPK3, mixed lineage kinase domain like protein (MLKL) and dynamin-related protein 1 (DRP1) expressions were also detected. We found that high glucose disordered CaMKIIδ alternative splicing. I1PP1 over-expression suppressed PLB phosphorylation, ox-CaMKII, DRP1, RIPK3 and cleaved-caspase 3 proteins expression, decreased LDH release, attenuated necroptosis, increased ATP level, inhibited oxidative stress, and elevated mitochondrial membrane potential in high glucose-stimulated cardiomyocytes. However, there was no effect on phosphorylation of MLKL (p-MLKL), p-CaMKII, and receptor interacting protein kinase 1 (RIPK1) expression. Altogether, I1PP1 over-expression alleviated CaMKIIδ alternative splicing disorder, suppressed CaMKII oxidation, reduced reactive oxygen species (ROS) accumulation and inhibited necroptosis to attenuate high glucose-induced cardiomyocytes injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2019.02.022 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Rheumatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
Background: Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population.
Patients And Methods: The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA).
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Division of Gastroenterology and Hepatology, 200 1st Street SW, Rochester, MN, 55905, USA.
Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!