Polysome profiling is a widely used method to monitor the translation status of mRNAs. Although it is theoretically a simple technique, it is labor intensive. Repetitive polysome fractionation rapidly generates a large number of samples to be handled in the downstream processes of protein elimination, RNA extraction and quantification. Here, we propose a multiplex polysome profiling experiment in which distinct cellular extracts are pooled before loading on the sucrose gradient for fractionation. We used the multiplexing method to study translation in E. coli. Multiplexing polysome profiling experiments provided similar mRNA translation status to that obtained with the non-multiplex method with comparable distribution of mRNA copies between the polysome profiling fractions, similar ribosome occupancy and ribosome density. The multiplexing method was used for parallel characterization of gene translational responses to changing mRNA levels. When the mRNA level of two native genes, cysZ and lacZ was increased by transcription induction, their global translational response was similar, with a higher ribosome load leading to increased ribosome occupancy and ribosome densities. However the pattern and the magnitude of the translational response were gene specific. By reducing the number of polysome profiling experiments, the multiplexing method saved time and effort and reduced cost and technical bias. This method would be useful to study the translational effect of mRNA sequence-dependent parameters that often require testing multiple samples and conditions in parallel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380557PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212297PLOS

Publication Analysis

Top Keywords

polysome profiling
24
profiling experiments
12
multiplexing method
12
multiplexing polysome
8
study translation
8
translation status
8
method study
8
ribosome occupancy
8
occupancy ribosome
8
translational response
8

Similar Publications

Background: The sustained activation of androgen receptor splice variant-7 (AR-V7) is a key factor in the resistance of castration-resistant prostate cancer (CRPC) to second-generation anti-androgens such as enzalutamide (ENZ). The AR/AR-V7 protein is regulated by the E3 ubiquitin ligase STUB1 and a complex involving HSP70, but the precise mechanism remains unclear.

Methods: High-throughput RNA sequencing was used to identify differentially expressed circular RNAs (circRNAs) in ENZ-resistant and control CRPC cells.

View Article and Find Full Text PDF

The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities.

View Article and Find Full Text PDF

Translational silence of spermatozoa has long been considered the norm in animals. However, studies in mammals have shown that the mitochondrial ribosomal machinery is selectively activated during capacitation in the female reproductive tract, while cytosolic ribosomes remain inactive. Here, using quantitative proteomics in a piscine model species, we show that proteins involved in mRNA processing and cytoplasmic translation are predominantly accumulated in immature spermatozoa within the extratesticular excurrent ducts, while those related to flagellar motility are enriched in ejaculated (mature) sperm.

View Article and Find Full Text PDF

Autophagy related 7 (ATG7) regulates food intake and liver health during asparaginase exposure.

J Biol Chem

January 2025

Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States; Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States; Endocrinology and Animal Biosciences Graduate Program, Rutgers University, New Brunswick, New Jersey, United States; New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States. Electronic address:

Amino acid starvation by the chemotherapy agent asparaginase is a potent activator of the integrated stress response (ISR) in liver and can upregulate autophagy in some cell types. We hypothesized that autophagy related 7 (ATG7), a protein that is essential for autophagy and an ISR target gene, was necessary during exposure to asparaginase to maintain liver health. We knocked down Atg7 systemically (Atg7) or in hepatocytes only (ls-Atg7KO) in mice before exposure to pegylated asparaginase for 5 d.

View Article and Find Full Text PDF

Quantitative RNA pseudouridine maps reveal multilayered translation control through plant rRNA, tRNA and mRNA pseudouridylation.

Nat Plants

January 2025

Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.

Pseudouridine (Ψ) is the most abundant RNA modification, yet studies of Ψ have been hindered by a lack of robust methods to profile comprehensive Ψ maps. Here we utilize bisulfite-induced deletion sequencing to generate transcriptome-wide Ψ maps at single-base resolution across various plant species. Integrating ribosomal RNA, transfer RNA and messenger RNA Ψ stoichiometry with mRNA abundance and polysome profiling data, we uncover a multilayered regulation of translation efficiency through Ψ modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!