A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methane alleviates sepsis-induced injury by inhibiting pyroptosis and apoptosis: in vivo and in vitro experiments. | LitMetric

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Methane has been reported to have anti-oxidative, anti-apoptotic and anti-inflammatory properties. We investigated the potential protective effects of methane on sepsis-induced injury and determined the related mechanisms. C57BL/6 mice received laparotomy with cecal ligation and puncture (CLP) to create a septic model, followed by methane-rich saline (MRS) treatment after CLP. MRS treatment improved the 5-day survival rate and organ functions and alleviated pathological damage of the mice, as well as reduced excessive inflammatory mediators, such as tumor necrosis factor-α and interleukin-6. MRS treatment also decreased the levels of oxidative stress index proteins, decreased the apoptosis of cells and inhibited nod-liker receptor protein (NLRP)3-mediated pyroptosis in the lung and intestine. In in vitro experiments, RAW264.7 and primary peritoneal macrophages were treated with lipopolysaccharide (LPS) plus adenosine-triphosphate (ATP) to induce inflammation and pyroptosis. Consistent with the in vivo results, methane-rich medium (MRM) treatment also reduced the levels of excessive inflammatory mediators, and decreased the levels of ROS, inhibited apoptosis and pyroptosis. Our results indicate that methane offers a protective effect for septic mice via its anti-inflammation, anti-oxidation, anti-pyroptosis and anti-apoptosis properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402521PMC
http://dx.doi.org/10.18632/aging.101831DOI Listing

Publication Analysis

Top Keywords

sepsis-induced injury
8
vitro experiments
8
excessive inflammatory
8
inflammatory mediators
8
decreased levels
8
methane
4
methane alleviates
4
alleviates sepsis-induced
4
injury inhibiting
4
pyroptosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!