Nanodiamond-gold nanoparticle (ND-AuNP) dimers constitute a potent tool for controlled thermal heating of biological systems on the nanoscale, by combining a local light-induced heat source with a sensitive local thermometer. Unfortunately, previous solution-based strategies to build ND-AuNP conjugates resulted in large nanoclusters or a broad population of multimers with limited separation efficiency. Here, we describe a new strategy to synthesize discrete ND-AuNP dimers via the synthesis of biotin-labeled DNA-AuNPs through thiol chemistry and its immobilization onto the magnetic bead (MB) surface, followed by reacting with streptavidin-labeled NDs. The dimers can be easily released from MB via a strand displacement reaction and separated magnetically. Our method is facile, convenient, and scalable, ensuring high-throughput formation of very stable dimer structures. This ligand-induced self-assembly approach enables the preparation of a wide variety of dimers of designated sizes and compositions, thus opening up the possibility that they can be deployed in many biological actuation and sensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b00113DOI Listing

Publication Analysis

Top Keywords

ligand-induced self-assembly
8
nanodiamond-gold nanoparticle
8
nd-aunp dimers
8
dimers
5
stepwise ligand-induced
4
self-assembly facile
4
facile fabrication
4
fabrication nanodiamond-gold
4
nanoparticle dimers
4
dimers noncovalent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!