Low-dimensional narrow-band-gap III-V semiconductors are key building blocks for the next generation of high-performance nanoelectronics, nanophotonics, and quantum devices. Realizing these various applications requires an efficient methodology that enables the material dimensional control during the synthesis process and the mass production of these materials with perfect crystallinity, reproducibility, low cost, and outstanding electronic and optoelectronic properties. Although advances in one- and two-dimensional narrow-band-gap III-V semiconductors synthesis, the progress toward reliable methods that can satisfy all of these requirements has been limited. Here, we demonstrate an approach that provides a precise control of the dimension of InAs from one-dimensional nanowires to wafer-scale free-standing two-dimensional nanosheets, which have a high degree of crystallinity and outstanding electrical and optical properties, using molecular-beam epitaxy by controlling catalyst alloy segregation. In our approach, two-dimensional InAs nanosheets can be obtained directly from one-dimensional InAs nanowires by silver-indium alloy segregation, which is much easier than the previously reported methods, such as the traditional buffering technique and select-area epitaxial growth. Detailed transmission electron microscopy investigations provide solid evidence that the catalyst alloy segregation is the origination of the InAs dimensional transformation from one-dimensional nanowires to two-dimensional nanosheets and even to three-dimensional complex crosses. Using this method, we find that the wafer-scale free-standing InAs nanosheets can be grown on various substrates including Si, MgO, sapphire, GaAs, etc. The InAs nanosheets grown at high temperature are pure-phase single crystals and have a high electron mobility and a long time-resolved terahertz kinetics lifetime. Our work will open up a conceptually new and general technology route toward the effective controlling of the dimension of the low-dimensional III-V semiconductors. It may also enable the low-cost fabrication of free-standing nanosheet-based devices on an industrial scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b04561 | DOI Listing |
Sci Adv
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.
View Article and Find Full Text PDFNature
January 2025
imec, Leuven, Belgium.
Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.
View Article and Find Full Text PDFNat Commun
December 2024
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.
View Article and Find Full Text PDFPhys Rev E
November 2024
Institute of Physics, University of Opole, Oleska 48, 45-052 Opole, Poland.
We study the effects of disorder on the exciton spectra in quantum well (QW) semiconductor structures. We model the disorder by introducing the fractional Laplacian into the Schrödinger equations, which describe the exciton spectra of the above QW structures. We calculate the exciton binding energies in its ground state and a few low-lying excited states as a function of the GaAs QW size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!