Tuning the c-Axis Orientation of Calcium Phosphate Hybrid Thin Films Using Polymer Templates.

Langmuir

Department of Chemistry and Biotechnology, School of Engineering , The University of Tokyo, 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.

Published: March 2019

The orientation of the c-axis in octacalcium phosphate (OCP) nanocrystals that were incorporated into hybrid thin films was successfully tuned using poly(vinyl alcohol) (PVA) thin-film templates of varying thicknesses. This approach was inspired by biomineralization. Thicker PVA templates enhanced the c-axis orientation of the OCP crystals perpendicular to the substrate. Using this approach with a 900 nm thick PVA template, OCP/PVA hybrid thin films (1.8 μm thick) with a c-axis orientation perpendicular to the substrate were formed. Hydroxyapatite (HAP) hybrid thin films that also exhibited a perpendicular c-axis orientation were obtained through the topotactic transformation of the OCP/PVA hybrid thin films in aqueous solution. The thickness change of the polymer templates had a significant effect on the structure of the OCP nanocrystals in the hybrid thin films. The structural control of the OCP hybrid thin films that were formed through the biomineralization-inspired approach allowed the formation of HAP hybrid thin films with controlled structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b04318DOI Listing

Publication Analysis

Top Keywords

hybrid thin
32
thin films
32
c-axis orientation
16
hybrid
8
thin
8
films
8
polymer templates
8
ocp nanocrystals
8
perpendicular substrate
8
ocp/pva hybrid
8

Similar Publications

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

Realizing field-free switching of perpendicular magnetization by spin-orbit torques is crucial for developing advanced magnetic memory and logic devices. However, existing methods often involve complex designs or hybrid approaches, which complicate fabrication and affect device stability and scalability. Here, we propose a novel approach using -polarized spin currents for deterministic switching of perpendicular magnetization through interfacial engineering.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!