State-Interaction Pair-Density Functional Theory Can Accurately Describe a Spiro Mixed Valence Compound.

J Phys Chem A

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota, Minneapolis , Minnesota 55455-0431 , United States.

Published: March 2019

Mixed-valence compounds with strong couplings between electronic states constitute one of the most challenging types of multireference systems for electronic structure theory. Previous work on a model mixed-valence compound, the 2,2',6,6'-tetrahydro-4 H,4' H-5,5'-spirobi[cyclopenta[ c]pyrrole] cation, showed that multireference perturbation theory (MRPT) can give a physical energy surface for the mixed-valence compound only by going to the third order or by using a scheme involving averaging orbital energies in a way specific to mixed-valence systems. In this study, we show that second-order MRPT methods (CASPT2, MS-CASPT2, and XMS-CASPT2) can give good results by calculating the Fock operator for the zeroth-order Hamiltonian using the state-averaged density matrix. We also show that state-interaction pair-density functional theory (SI-PDFT) is free from the unphysical behavior of previously tested second-order MRPT methods for this prototype mixed-valence compound near the avoided crossing. This is very encouraging because of the much lower cost in applying SI-PDFT to large or complex systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.9b01301DOI Listing

Publication Analysis

Top Keywords

mixed-valence compound
12
state-interaction pair-density
8
pair-density functional
8
functional theory
8
second-order mrpt
8
mrpt methods
8
mixed-valence
5
theory
4
theory accurately
4
accurately describe
4

Similar Publications

A bis(triarylamine) (BTA) radical cation, bridged by two o-terphenylene moieties, was prepared and characterized to explore the impact of the double-π-bridge on the intramolecular charge/spin transfer process in the 2-site organic mixed-valence (MV) compound. Spectroscopic analyses on optically and thermally assisted intervalence charge-transfer (IVCT) processes revealed that the doubly π-bridging enhanced the charge delocalization between two nitrogen redox-active centers, whereas the electronic coupling was not so strengthened, in comparison with the singly π-bridging reference compound.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on the first nonlinear optical (NLO) chromophores made of arylimido-polyoxometalates featuring two-dimensional (2D) structures, comparing their properties with one-dimensional counterparts through synthesized arylimido-hexamolybdate derivatives.* -
  • Findings reveal that the 2D chromophores exhibit notable red-shifts in their electronic absorption spectra due to larger conjugated systems, along with mixed valence behavior in electrochemical measurements depending on the positioning of the acceptors.* -
  • The highest hyperpolarizability values were observed in one compound, emphasizing a strong 2D response, with contributions from phenyl bridges and polyoxometalates evident in the computed electronic
View Article and Find Full Text PDF
Article Synopsis
  • The study synthesizes nanocrystalline samples of NixFe1-xCo2O4 at varying nickel concentrations via co-precipitation and annealing at 900 °C, revealing different crystallization phases and decreased particle size with more nickel substitution.
  • Magnetic properties were analyzed, showing metamagnetic transitions in certain samples and dynamic susceptibility dependent on both nickel content and temperature, indicating complex magnetic states like spin-glass freezing.
  • First principles density functional theory calculates suggest these materials exhibit ferrimagnetic and insulating behaviors, with potential applications in spintronics due to their distinctive electronic structures and spin-dependent characteristics.
View Article and Find Full Text PDF

Multienzyme-like polyoxometalate for oxygen-independent sonocatalytic enhanced cancer therapy.

J Colloid Interface Sci

March 2025

School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China. Electronic address:

Artificially synthesized nanozymes exhibit enzymatic activity similar to that of natural enzymes. However, in the complex tumor microenvironment, their diversity and catalytic activity show significant variations, limiting their effectiveness in catalytic therapy. Developing artificial enzymes with multiple enzymatic activities and spatiotemporal controllable catalytic abilities is of great clinical significance.

View Article and Find Full Text PDF
Article Synopsis
  • Two diradicaloid systems were developed from oxidizing a specific aza-BODIPY core, which were thoroughly characterized using various experimental and computational techniques.
  • The ground state in solution is believed to be diamagnetic (stable), while at room temperature, the solid-state exhibits a mix of excited states and characters.
  • Fast excited state deactivation and solvent-dependent diradical character were observed, with the system able to transition through different states via single-electron reductions or deprotonation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!