A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Titanium-Based Nanoscale Metal-Organic Framework for Type I Photodynamic Therapy. | LitMetric

Nanoscale metal-organic frameworks (nMOFs) have shown great potential as nanophotosensitizers for photodynamic therapy (PDT) owing to their high photosensitizer loadings, facile diffusion of reactive oxygen species (ROSs) through their porous structures, and intrinsic biodegradability. The exploration of nMOFs in PDT, however, remains limited to an oxygen-dependent type II mechanism. Here we report the design of a new nMOF, Ti-TBP, composed of Ti-oxo chain secondary building units (SBUs) and photosensitizing 5,10,15,20-tetra( p-benzoato)porphyrin (TBP) ligands, for hypoxia-tolerant type I PDT. Upon light irradiation, Ti-TBP not only sensitizes singlet oxygen production, but also transfers electrons from excited TBP* species to Ti-based SBUs to afford TBP ligands and Ti centers, thus propagating the generation of superoxide, hydrogen peroxide, and hydroxyl radicals. By generating four distinct ROSs, Ti-TBP-mediated PDT elicits superb anticancer efficacy with >98% tumor regression and 60% cure rate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b13804DOI Listing

Publication Analysis

Top Keywords

nanoscale metal-organic
8
photodynamic therapy
8
tbp ligands
8
titanium-based nanoscale
4
metal-organic framework
4
framework type
4
type photodynamic
4
therapy nanoscale
4
metal-organic frameworks
4
frameworks nmofs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!