We demonstrate the usefulness of Bayesian methods in developing, evaluating, and using psychological models in the experimental analysis of behavior. We do this through a case study, involving new experimental data that measure the response count and time allocation behavior in pigeons under concurrent random-ratio random-interval schedules of reinforcement. To analyze these data, we implement a series of behavioral models, based on the generalized matching law, as graphical models, and use computational methods to perform fully Bayesian inference. We demonstrate how Bayesian methods, implemented in this way, make inferences about parameters representing psychological variables, how they test the descriptive adequacy of models as accounts of behavior, and how they compare multiple competing models. We also demonstrate how the Bayesian graphical modeling approach allows for more complicated modeling structures, including hierarchical, common cause, and latent mixture structures, to formalize more complicated behavioral models. As part of the case study, we demonstrate how the statistical properties of Bayesian methods allow them to provide more direct and intuitive tests of theories and hypotheses, and how they support the creative and exploratory development of new theories and models.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeab.506DOI Listing

Publication Analysis

Top Keywords

bayesian methods
16
demonstrate bayesian
12
generalized matching
8
matching law
8
case study
8
behavioral models
8
models
7
bayesian
6
methods applied
4
applied generalized
4

Similar Publications

Effects of population aging on quality of life and disease burden: a population-based study.

Glob Health Res Policy

January 2025

Center for Public Health and Epidemic Preparedness and Response, Peking University, Haidian District, 38Th Xueyuan Road, Beijing, 100191, China.

Background: As population aging intensifies, it becomes increasingly important to elucidate the casual relationship between aging and changes in population health. Therefore, our study proposed to develop a systematic attribution framework to comprehensively evaluate the health impacts of population aging.

Methods: We used health-adjusted life expectancy (HALE) to measure quality of life and disability-adjusted life years (DALY) to quantify the burden of disease for the population of Guangzhou.

View Article and Find Full Text PDF

Miscarriage represents a prevalent yet insufficiently studied adverse pregnancy outcome. The definitive causal links between various pathogens and miscarriage remain to be established. To investigate the causal connections between pathogen infections and miscarriage, we utilized a two-sample bidirectional Mendelian randomization (MR) analysis.

View Article and Find Full Text PDF

Background: The ovarian cancer (OC) preclinical detectable phase (PCDP), defined as the interval during which cancer is detectable prior to clinical diagnosis, remains poorly characterised. We report exploratory analyses from the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS).

Methods: In UKCTOCS between Apr-2001 and Sep-2005, 101,314 postmenopausal women were randomised to no screening (NS) and 50,625 to annual multimodal screening (MMS) (until Dec-2011) using serum CA-125 interpreted by the Risk of Ovarian Cancer Algorithm (ROCA).

View Article and Find Full Text PDF

The current paper aimed to estimate the network structure of general psychopathology (internalizing and externalizing symptoms/disorders) among 239 gifted children in Jordan. This cross-sectional study with a convenience sampling method was conducted between September 2023 and October 2024 among gifted children aged 7-12. The Child Behavior Checklist (CBCL) was employed to assess six symptom clusters: conduct problems, attention-deficit/hyperactivity disorder (ADHD), and oppositional defiant problems as externalizing symptoms, and affective problems, anxiety issues, and somatic complaints as internalizing symptoms.

View Article and Find Full Text PDF

Objective: This study aims to analyze adverse drug events (ADE) related to romosozumab from the second quarter of 2019 to the third quarter of 2023 from FAERS database.

Methods: The ADE data related to romosozumab from 2019 Q2 to 2023 Q3 were collected. After data normalization, four signal strength quantification algorithms were used: ROR (Reporting Odds Ratios), PRR (Proportional Reporting Ratios), BCPNN (Bayesian Confidence Propagation Neural Network), and EBGM (Empirical Bayesian Geometric Mean).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!