Stereoselectively Assembled Metal-Organic Framework (MOF) Host for Catalytic Synthesis of Carbon Hybrids for Alkaline-Metal-Ion Batteries.

Angew Chem Int Ed Engl

Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China.

Published: April 2019

Cost-effective metal-based nanostructured hybrids have been widely dedicated to potential energy storage and conversion applications. Herein, we develop a facile methodology for the synthesis of precise carbon-confined hybrid nanostructures by stereoselective assembly accompanied by catalytic pyrolysis. Polyacrylonitrile fiber films favors not only metal-polymer coordination, but also oriented assembly to ensure the well-defined nanostructure of the carbon hybrids. During chemical vapor deposition (CVD), cobalt-nanoparticle-catalyzed growth of carbon-nanotube branches driven by organic molecules (e.g. melamine) delivers hierarchical carbon hybrids. The resulting carbon hybrids exhibit outstanding electrochemical performance for metal-ion batteries, for example, a high specific capacity of 680 mAh g after 320 cycles (Li-storage) and 220 mAh g after 500 cycles (Na-storage) without decay.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201900240DOI Listing

Publication Analysis

Top Keywords

carbon hybrids
16
hybrids
5
stereoselectively assembled
4
assembled metal-organic
4
metal-organic framework
4
framework mof
4
mof host
4
host catalytic
4
catalytic synthesis
4
carbon
4

Similar Publications

Crash box development is carried out continuously to obtain a lightweight design and high energy absorption. This dataset presents the results of a crash box experiments. Quasi-static testing of aluminum, honeycomb, and hybrid tube specimens was carried out using a universal testing machine.

View Article and Find Full Text PDF

Numerous studies have solved the problem of monitoring statistical processes with complete samples. However, censored or incomplete samples are commonly encountered due to constraints such as time and cost. Adaptive progressive Type II hybrid censoring is a novel method with the advantages of saving time and improving efficiency.

View Article and Find Full Text PDF

The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.

View Article and Find Full Text PDF

Carbonization (Argon atmosphere, 900 °C, 2 h) of heteroatom-enriched pyridine-bridged inorganic-organic hybrid material (HPHM) resulted in the formation of a high specific surface area (SA of 1080 m g) carbonaceous material designated as HPHMC900. The HPHMC900 serves as an effective electrocatalyst for the reduction of nitrate in an aqueous environment to ammonia (NORR). Importantly, HPHMC900 demonstrated fast kinetics for the NORR with a low Tafel slope of 70 mV decade.

View Article and Find Full Text PDF

Thermal oxidation has a significant effect on the durability of bitumen composites reinforced with carbon nanomaterials. However, the mechanisms of aging resistance and the effect of aging on the chemical properties, morphology, micromechanical properties, and rheology of bitumen with carbon nanomaterials are still unclear. This study investigated the mechanisms of aging resistance underlying the synergistic effects of graphene and carbon nanotubes (CNTs) on the durability of bitumen composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!