Antioxidant Vitamins and Ageing.

Subcell Biochem

University of Ljubljana, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia.

Published: June 2019

The free radical theory of ageing (FRTA), presented by Denham Harman in 1950s, proposed that aerobic organisms age due to reactive oxygen species (ROS)/free radical induced damage that accumulates in cells over time. Since antioxidants can neutralize free radicals by electron donation, the most logical approach was to use them as supplements in order to prevent ageing. In this chapter, we will discuss the inability of antioxidant supplementation to improve health and longevity.Although many antioxidants are efficient free radical quenchers in vitro, their in vivo effects are less clear. Recent evidence from human trials implies that antioxidant supplements do not increase lifespan and can even increase the incidence of diseases. Synthetic antioxidants were unable to consistently prevent ROS-induced damage in vivo, possibly as dietary antioxidants may not act only as ROS scavengers. Antioxidants can have dichotomous roles on ROS production. They are easily oxidized and can act as oxidants to induce damage when present in large concentrations. In appropriate amounts, they can modulate cellular metabolism by induction of cell stress responses and/or activate cell damage repair and maintenance systems. Therefore, the antioxidants' beneficial role may be reversed/prevented by excessive amounts of antioxidant supplements. On the other hand, ROS are also involved in many important physiological processes in humans, such as induction of stress responses, pathogen defence, and systemic signalling. Thus, both "anti-oxidative or reductive stress" (the excess of antioxidants) as well as oxidative stress (the excess of ROS) can be damaging and contribute to the ageing processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-981-13-2835-0_1DOI Listing

Publication Analysis

Top Keywords

free radical
8
antioxidant supplements
8
stress responses
8
antioxidants
6
antioxidant
4
antioxidant vitamins
4
ageing
4
vitamins ageing
4
ageing free
4
radical theory
4

Similar Publications

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

Introduction: In NCCN favorable intermediate-risk (FIR) prostate cancer (PCa) patients treated with radical prostatectomy (RP), we tested the effect of upstaging and upgrading on cancer-specific mortality (CSM).

Methods: Within the SEER database (2010-2021), upstaging (≥pT3a or pN1) and upgrading (ISUP ≥3) rates in FIR RP patients were tabulated. Kaplan-Meier (KM) plots and multivariable Cox-regression models (CRMs) were fitted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!