Purpose: It is demonstrated that unsaturated fatty acids can counteract saturated fatty acids-induced lipotoxicity, but the molecular mechanisms are unclear. In this study, we investigated the protective effects of monounsaturated oleic acid (OA) against saturated palmitic acid (PA)-induced cytotoxicity in rat β cells as well as islets, and mechanistically focused on its regulation on endoplasmic reticulum (ER) stress.
Methods: Rat insulinoma cell line INS-1E cells and primary islets were treated with PA with or without OA for 24 h to determine the cell viability, apoptosis, and ER stress. SD rats were fed with high-fat diet (HFD) for 16 w, then, HFD was half replaced by olive oil to observe the protective effects of monounsaturated fatty acids rich diet.
Results: We demonstrated that PA impaired cell viability and insulin secretion of INS-1E cells and rat islets, but OA robustly rescued cells from cell death. OA substantially alleviated either PA or chemical ER stressors (thapsigargin or tunicamycin)-induced ER stress. Importantly, OA attenuated the activity of PERK-eIF2α-ATF4-CHOP pathway and regulated the ER Ca homeostasis. In vivo, only olive oil supplementation did not cause significant changes, while high-fat diet (HFD) for 32 w obviously induced islets ER stress and impaired insulin sensitivity in SD rats. Half replacement of HFD with olive oil (a mixed diet) has ameliorated this effect.
Conclusion: OA alleviated PA-induced lipotoxicity in INS-1E cells and improved insulin sensitivity in HFD rats. The amelioration of PA triggered ER stress may be responsible for its beneficial effects in β cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12020-019-01867-3 | DOI Listing |
Tissue Cell
January 2025
Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China. Electronic address:
Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.
Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.
Life Sci
January 2025
Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:
Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
Cells
November 2024
Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Sarco/endoplasmic reticulum Ca-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Type 1 diabetes (T1D) is characterized by immune cell infiltration in the islets of Langerhans, leading to the destruction of insulin-producing beta cells. This destruction is driven by secreted cytokines and cytotoxic T cells inducing apoptosis in beta cells. Butyrate, a metabolite produced by the gut microbiota, has been shown to have various health benefits, including anti-inflammatory and anti-diabetic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!