Various studies demonstrate that CD137 (TNFRSF9, 4-1BB) promotes atherosclerosis and vascular inflammation in experimental models via interactions with the CD137 ligand (CD137L). However, the exact role of CD137 in ischemic stroke remains unclear. In this study, we analyzed dynamic changes of peripheral CD137 expression on T cells in a mouse model of cerebral ischemia-middle cerebral artery occlusion (MCAO), as well as alternation of neurological function, infarct size and cerebral inflammatory status after inhibition of the CD137/CD137L pathway using an anti-CD137L monoclonal antibody. MCAO mice showed elevated surface expression of CD137 on T cells in both peripheral blood and lymphoid tissues during early cerebral ischemia. Remarkably, blockade of the CD137/CD137L pathway reduced the post-ischemic brain damage. Our findings indicate that enhanced CD137 costimulation occurs in early cerebral ischemia and promotes T cell activation, which in turn upregulates inflammatory immune response and possibly exerting deleterious effects on cerebral ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-019-00661-zDOI Listing

Publication Analysis

Top Keywords

cerebral ischemia
16
peripheral cd137
8
cd137 expression
8
mouse model
8
cd137/cd137l pathway
8
early cerebral
8
cd137
7
cerebral
7
increased peripheral
4
expression mouse
4

Similar Publications

Oral nimodipine is the only drug approved in North America for patients with aneurysmal subarachnoid hemorrhage (aSAH). However, bioavailability is variable and frequently poor, leading to fluctuations in peak plasma concentrations that cause dose-limiting hypotension. Furthermore, administration is problematic in patients who cannot swallow.

View Article and Find Full Text PDF

Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.

View Article and Find Full Text PDF

Background: Cerebral venous thrombosis (CVT) is a rare condition in children, and its description remains limited in North Africa. The objective of our study was to describe the clinical, etiological, radiological, therapeutic, and evolutionary characteristics of children with CVT in western Algeria.

Methods: This was a retrospective observational study involving children with CVT.

View Article and Find Full Text PDF

Background: Endothelial dysfunction and inflammation are linked to migraine, which may contribute to atherogenesis and increase the risk of ischemia. In migraineurs, preclinical vascular involvement manifested as compromised structural characteristics of vessel wall has not received enough attention or evaluation.

Objectives: To measure plasma pentraxin 3 as an indicator of endothelial dysfunction in migraine in comparison to controls and to examine its correlation with clinical characteristics, headache severity, and brain magnetic resonance imaging findings.

View Article and Find Full Text PDF

Effects of Electroacupuncture Per-Conditioning at Huantiao on Motor Function Recovery in Acute Cerebral Ischemia Mice.

Physiol Behav

January 2025

Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address:

Background: Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy.

Objective: To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!