Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We experimentally determined the tensile stress-strain response of human muscle along fiber direction and compressive stress-strain response transverse to fiber direction at intermediate strain rates (100-102/s). A hydraulically driven material testing system with a dynamic testing mode was used to perform the tensile and compressive experiments on human muscle tissue. Experiments at quasi-static strain rates (below 100/s) were also conducted to investigate the strain-rate effects over a wider range. The experimental results show that, at intermediate strain rates, both the human muscle's tensile and compressive stress-strain responses are nonlinear and strain-rate sensitive. Human muscle also exhibits a stiffer and stronger tensile mechanical behavior along fiber direction than its compressive mechanical behavior along the direction transverse to fiber direction. An Ogden model with two material constants was adopted to describe the nonlinear tensile and compressive behaviors of human muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.4042900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!