A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Local loop opening in untangled ring polymer melts: a detailed "Feynman test" of models for the large scale structure. | LitMetric

AI Article Synopsis

  • The study examines how ring polymers behave in dense solutions, focusing on their untangled states which cause them to crumple and segregate.
  • Researchers employed a multi-scale computational method, combining extensive fiber-level simulations with theoretical constructions of ring configurations, revealing that topological constraints can be ignored at small scales.
  • Findings highlight that smaller rings act like ideal lattice trees while larger rings are more compact, and a comparison of theoretical and actual results identifies discrepancies in certain structural measures, advancing the understanding of ring polymer behavior.

Article Abstract

The conformational statistics of ring polymers in melts or dense solutions is strongly affected by their quenched microscopic topological state. The effect is particularly strong for untangled (i.e. non-concatenated and unknotted) rings, which are known to crumple and segregate. Here we study these systems using a computationally efficient multi-scale approach, where we combine massive simulations on the fiber level with the explicit construction of untangled ring melt configurations based on theoretical ideas for their large scale structure. We find (i) that topological constraints may be neglected on scales below the standard entanglement length, Le, (ii) that rings with a size 1 ≤ Lr/Le ≤ 30 exhibit nearly ideal lattice tree behavior characterized by primitive paths which are randomly branched on the entanglement scale, and (iii) that larger rings are compact with gyration radii Rg2(Lr) ∝ Lr2/3. The detailed comparison between equilibrated and constructed ensembles allows us to perform a "Feynman test" of our understanding of untangled rings: can we convert ideas for the large scale ring structure into algorithms for constructing (nearly) equilibrated ring melt samples? We show that most structural observables are quantitatively reproduced by two different construction schemes: hierarchical crumpling and ring melts derived from the analogy to interacting branched polymers. However, the latter fail the "Feynman test" with respect to the magnetic radius, Rm, which we have defined based on an analogy to magnetostatics. While Rm is expected to vanish for double-folded structures, the observed values of Rm2(Lr) ∝ Rg2(Lr) provide a simple and computationally convenient measure of the presence of a non-negligible amount of local loop opening in crumpled rings.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm02587hDOI Listing

Publication Analysis

Top Keywords

"feynman test"
12
large scale
12
local loop
8
loop opening
8
untangled ring
8
scale structure
8
ring melt
8
ideas large
8
ring
6
rings
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!