Chronic active Epstein-Barr virus (EBV) infection (CAEBV) is an EBV-associated lymphoproliferative disease characterized by repeated or sustainable infectious mononucleosis (IM)-like symptoms. EBV is usually detected in B cells in patients who have IM or Burkitt's lymphoma and even in patients with X-linked lymphoproliferative syndrome, which is confirmed to have vulnerability to EBV infection. In contrast, EBV infects T cells (CD4 T, CD8 T, and γδT) or NK cells mono- or oligoclonally in CAEBV patients. It is known that the CAEBV phenotypes differ depending on which cells are infected with EBV. CAEBV is postulated to be associated with a genetic immunological abnormality, although its cause remains undefined. Here we describe a case of EBV-related γδT-cell proliferation with underlying hypomorphic mutation. The immunological phenotype consisted of γδT-cell proliferation in the peripheral blood. A presence of EBV-infected B cells and γδT cells mimicked γδT-cell-type CAEBV. Although the patient had normal expression of CD132 (common γ chain), the phosphorylation of STAT was partially defective, indicating impaired activation of the downstream signal of the JAK/STAT pathway. Although the patient was not diagnosed as having CAEBV, this observation shows that CAEBV might be associated with immunological abnormality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369201PMC
http://dx.doi.org/10.3389/fped.2019.00015DOI Listing

Publication Analysis

Top Keywords

hypomorphic mutation
8
ebv infection
8
γδt cells
8
immunological abnormality
8
γδt-cell proliferation
8
caebv
7
cells
6
ebv
5
epstein-barr virus-associated
4
virus-associated γδ
4

Similar Publications

Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.

View Article and Find Full Text PDF
Article Synopsis
  • Wolbachia pipientis are bacteria that manipulate the reproduction of their arthropod and nematode hosts to enhance their own transmission, particularly favoring infected females.
  • Research reveals that these bacteria can improve fertility in Drosophila melanogaster females with specific mutations affecting germline stem cell differentiation.
  • Further analysis shows that W. pipientis infection alters the expression of key genetic interactors and impacts genes involved in ubiquitination and histone modification, suggesting these processes play a role in how W. pipientis influences germline stem cell functions.
View Article and Find Full Text PDF

Engineered tRNAs efficiently suppress CDKL5 premature termination codons.

Sci Rep

December 2024

Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy.

The CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disorder characterized by early-onset epilepsy, intellectual disability, motor and visual dysfunctions. The causative gene is CDKL5, which codes for a kinase required for brain development. There is no cure for CDD patients; treatments are symptomatic and focus mainly on seizure control.

View Article and Find Full Text PDF

PEX1 remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome.

bioRxiv

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in and disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the PEX1 allele, which results in a reduction of peroxisomal protein import.

View Article and Find Full Text PDF

Renal phenotyping in a hypomorphic murine model of propionic aciduria reveals common pathomechanisms in organic acidurias.

Sci Rep

December 2024

Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Breisacherstr. 62, 79106, Freiburg, Germany.

Mutations in the mitochondrial enzyme propionyl-CoA carboxylase (PCC) cause propionic aciduria (PA). Chronic kidney disease (CKD) is a known long-term complication. However, good metabolic control and standard therapy fail to prevent CKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!