Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376197 | PMC |
http://dx.doi.org/10.2514/1.J056976 | DOI Listing |
Acc Chem Res
January 2025
School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.
View Article and Find Full Text PDFJB JS Open Access
January 2025
Department of Orthopaedic Surgery, University Hospital, Shiga University of Medical Science, Shiga, Japan.
Background: Although a certain degree of tension in bridging sutures is required for proper tendon healing following suture-bridge rotator cuff repair, excessive suture tension may be detrimental to tendon healing. This study aimed to investigate the effects of bridging suture tension on clinical outcomes and tendon healing. We hypothesized that fixed, low tension of the bridging sutures would improve the tendon healing rate and clinical outcomes compared with maximum manual tensioning.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315516, Ilam, Iran.
This study highlights an innovative approach to catalysis by utilizing natural asphalt as a support material for developing carbon-based catalysts. By leveraging the principles of green chemistry, the research aims to create recyclable and environmentally friendly heterogeneous catalytic systems. This aligns with the growing demand for greener technologies and the use of biocompatible materials in chemical processes.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Research Institute of Forest Policy and Information, Chinese Academy of Forestry, Beijing, China.
The processing of LiDAR point cloud data is of critical importance in the context of forest resource surveys, as well as representing a pivotal element in the realm of forest physiological and ecological studies.Nonetheless, conventional denoising algorithms frequently exhibit deficiencies with regard to adaptability and denoising efficacy, particularly when employed in relation to disparate datasets.To address these issues, this study introduces DEN4, an unsupervised, deep learning-based point cloud denoising algorithm designed to improve the accuracy of single tree segmentation in LiDAR point clouds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!