Net ecosystem exchange (NEE) is an essential climate indicator of the direction and magnitude of carbon dioxide (CO) transfer between land surfaces and the atmosphere. Improved estimates of NEE can serve to better constrain spatiotemporal characteristics of terrestrial carbon fluxes, improve verification of land models, and advance monitoring of Earth's terrestrial ecosystems. Spatiotemporal NEE information developed by combining ground-based flux tower observations and spatiotemporal remote sensing datasets are of potential value in benchmarking land models. We apply a machine learning approach (Random Forest (RF)) to develop spatiotemporally varying NEE estimates using observations from a flux tower and several variables that can potentially be retrieved from satellite data and are related to ecosystem dynamics. Specific variables in model development include a mixture of remotely sensed (fraction of photosynthetically active radiation (fPAR), Leaf Area Index (LAI)) and ground-based data (soil moisture, downward solar radiation, precipitation and mean air temperature) in a complex landscape of the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho, USA. Predicted results show good agreement with the observed data for the NEE (r = 0.87). We then validate the temporal pattern of the NEE generated by the RF model for two independent years at the two sites not used in the development of the model. The model development process revealed that the most important predictors include LAI, downward solar radiation, and soil moisture. This work provides a demonstration of the potential power of machine learning methods for combining a variety of observational datasets to create spatiotemporally extensive datasets for land model verification and benchmarking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379406PMC
http://dx.doi.org/10.1038/s41598-019-38639-yDOI Listing

Publication Analysis

Top Keywords

machine learning
12
net ecosystem
8
ecosystem exchange
8
learning approach
8
land models
8
flux tower
8
model development
8
soil moisture
8
downward solar
8
solar radiation
8

Similar Publications

BMT: A Cross-Validated ThinPrep Pap Cervical Cytology Dataset for Machine Learning Model Training and Validation.

Sci Data

December 2024

Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.

In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.

View Article and Find Full Text PDF

Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.

View Article and Find Full Text PDF

Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.

View Article and Find Full Text PDF

Bias in machine learning applications to address non-communicable diseases at a population-level: a scoping review.

BMC Public Health

December 2024

Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.

Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.

View Article and Find Full Text PDF

Development and Validation of a Nomogram Based on Multiparametric MRI for Predicting Lymph Node Metastasis in Endometrial Cancer: A Retrospective Cohort Study.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:

Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).

Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!