A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Opportunistic Entanglement Distribution for the Quantum Internet. | LitMetric

Opportunistic Entanglement Distribution for the Quantum Internet.

Sci Rep

Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, H-1117, Hungary.

Published: February 2019

Quantum entanglement is a building block of the entangled quantum networks of the quantum Internet. A fundamental problem of the quantum Internet is entanglement distribution. Since quantum entanglement will be fundamental to any future quantum networking scenarios, the distribution mechanism of quantum entanglement is a critical and emerging issue in quantum networks. Here we define the method of opportunistic entanglement distribution for the quantum Internet. The opportunistic model defines distribution sets that are aimed to select those quantum nodes for which the cost function picks up a local minimum. The cost function utilizes the error patterns of the local quantum memories and the predictability of the evolution of the entanglement fidelities. Our method provides efficient entanglement distributing with respect to the actual statuses of the local quantum memories of the node pairs. The model provides an easily-applicable, moderate-complexity solution for high-fidelity entanglement distribution in experimental quantum Internet scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379403PMC
http://dx.doi.org/10.1038/s41598-019-38495-wDOI Listing

Publication Analysis

Top Keywords

quantum internet
20
entanglement distribution
16
quantum
14
distribution quantum
12
quantum entanglement
12
opportunistic entanglement
8
entanglement
8
quantum networks
8
cost function
8
local quantum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!