Platelet-Derived Growth Factor Receptor Alpha (PDGFRA) mutations occur in approximately 5-7% of gastrointestinal stromal tumours (GIST). Over half of all PDGFRA mutations are represented by the substitution at position 842 in the A-loop of an aspartic acid (D) with a valine (V), recognized as D842V, conferring primary resistance to imatinib in vitro and in clinical observations due to the conformation of the kinase domain, which negatively affects imatinib binding. The lack of interaction between imatinib and the D842V PDGFRA mutated model has been established and widely confirmed in vivo. However, for the other PDGFRA mutations, the correlation between pre-clinical and clinical data is still unclear. An in silico evaluation of the p.His845_Asn848delinsPro mutation involving exon 18 of PDGFRA in a metastatic GIST patient responding to first-line imatinib has been provided. Docking analyses were performed, and the ligand-receptor interactions were evaluated with the jCE algorithm for structural alignment. The docking simulation and structural superimposition analysis show that PDGFRA p.His845_Asn848delinsPro stabilizes the imatinib binding site with the residues that are conserved in KIT. The in vivo evidence that PDGFRA p.His845_Asn848delinsPro is sensitive to imatinib was confirmed by the molecular modelling, which may represent a reliable tool for the prediction of clinical outcomes and treatment selection in GIST, especially for rare mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379366PMC
http://dx.doi.org/10.1038/s41598-018-38028-xDOI Listing

Publication Analysis

Top Keywords

pdgfra mutations
12
molecular modelling
8
metastatic gist
8
gist patient
8
patient responding
8
imatinib binding
8
pdgfra phis845_asn848delinspro
8
imatinib
7
pdgfra
7
modelling evaluation
4

Similar Publications

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF
Article Synopsis
  • Adenoid cystic carcinomas (AdCC) of salivary gland origin are primarily defined by the presence of specific gene fusions, notably MYB::NFIB and MYBL1::NFIB, with sinonasal AdCC being particularly aggressive and lacking effective treatments.
  • Researchers conducted an extensive analysis of 88 sinonasal AdCC cases using various techniques like NGS and FISH to identify gene fusions and mutations, finding that the majority harbored canonical fusions while some had noncanonical ones, with a few tumors showing no fusions at all.
  • Mutational analysis revealed that about 68% of AdCCs tested (21 out of 31) had mutations in key oncogenes, highlighting potential areas for targeted
View Article and Find Full Text PDF

Canine high-grade oligodendrogliomas (HGOGs) exhibit a high expression of platelet-derived growth factor receptor-α (PDGFRA). We examined mutations and gain of and their association with the PDGFRA expression and proliferation of tumor cells in canine HGOG cases and cell lines. Polymerase chain reaction and sequence analysis revealed expected pathogenic mutations in exons 7 and 8 in 16/34 (47%) cases.

View Article and Find Full Text PDF

Background: Brain tumors exhibit diverse genetic landscapes and hemodynamic properties, influencing diagnosis and treatment outcomes.

Purpose: To explore the relationship between MRI perfusion metrics (rCBV, rCBF), genetic markers, and contrast enhancement patterns in gliomas, aiming to enhance diagnostic accuracy and inform personalized therapeutic strategies. Additionally, other radiological features, such as the T2/FLAIR mismatch sign, are evaluated for their predictive utility in IDH mutations.

View Article and Find Full Text PDF

Discovery of Potential Candidate Genes for Coat Colour in Wuzhishan Pigs by Integrating SNPs and mRNA Expression Analysis.

Animals (Basel)

December 2024

National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Despite identifying genes regulating the coat colour in Western pig breeds, the genetic basis of the coat colour in Chinese indigenous pigs is still not understood due to the diversity of indigenous breeds and their genetic differences from exotic pigs. In this study, 215 Wuzhishan pigs with three coat colour patterns (white, black, and black-back/white-belly) were used to conduct a genome-wide association analysis. We found that genes responsible for the coat colour in the Wuzhishan breed are located on chromosome 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!