A chiral guanidine-catalyzed asymmetric [4 + 1] cyclization of benzofuran-derived azadienes with 3-chlorooxindoles has been established, which constructed chiral spirooxindole frameworks with in situ generation of a five-membered ring with high diastereoselectivities (up to >95:5 dr) and good enantioselectivities (up to 94:6 er). This reaction represents the first catalytic asymmetric [4 + 1] cyclization of benzofuran-derived azadienes, which will enrich the research field of catalytic asymmetric cyclizations of such reactants. In addition, this reaction provides a useful strategy for the enantioselective construction of five-membered ring-based chiral spirooxindole scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b03004DOI Listing

Publication Analysis

Top Keywords

catalytic asymmetric
12
asymmetric cyclization
12
cyclization benzofuran-derived
12
benzofuran-derived azadienes
12
azadienes 3-chlorooxindoles
8
chiral spirooxindole
8
3-chlorooxindoles chiral
4
chiral guanidine-catalyzed
4
guanidine-catalyzed asymmetric
4
3-chlorooxindoles established
4

Similar Publications

Enantioselective construction of silicon-stereogenic vinylsilanes from simple alkenes.

Nat Commun

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.

The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.

View Article and Find Full Text PDF

Merging SOMO activation with transition metal catalysis: Deoxygenative functionalization of amides to β-aryl amines.

Sci Adv

January 2025

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China).

Singly occupied molecular orbital (SOMO) activation of in situ generated enamines has achieved great success in (asymmetric) α-functionalization of carbonyl compounds. However, examples on the use of this activation mode in the transformations of other functional groups are rare, and the combination of SOMO activation with transition metal catalysis is still less explored. In the area of deoxygenative functionalization of amides, intermediates such as iminium ions and enamines were often generated in situ to result in the formation of α-functionalized amines.

View Article and Find Full Text PDF

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Factor XIa (FXIa) is a plasma protease that plays a crucial role in the intrinsic pathway of blood coagulation, making it a promising target for antithrombotic therapy. Circular DNA aptamers, with their dramatically enhanced biological and structural stability, hold great potential as new-generation DNA-based anticoagulants. However, the functional selection and large-scale synthesis of them remains a substantial challenge.

View Article and Find Full Text PDF

An unusual chiral-at-metal mechanism for BINOL-metal asymmetric catalysis.

Nat Commun

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Chiral binaphthols (BINOL)-metal combinations serve as powerful catalysts in asymmetric synthesis. Their chiral induction mode, however, typically relies on multifarious non-covalent interactions between the substrate and the BINOL ligand. In this work, we demonstrate that the chiral-at-metal stereoinduction mode could serve as an alternative mechanism for BINOL-metal catalysis, based on mechanistic studies of BINOL-aluminum-catalyzed asymmetric hydroboration of heteroaryl ketones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!