Electrochemical Detection of Interaction between Copper(II) and Peptides Related to Pathological α-Synuclein Mutants.

Anal Chem

Department of Physical and Environmental Sciences , University of Toronto Scarborough, 1265 Military Trail , Toronto , Ontario M1C 1A4 , Canada.

Published: March 2019

We present a proof of concept study for electrochemical detection of the metal-binding site of α-synuclein (α-syn). Parkinson's disease (PD) is associated with the aggregation and misfolding of α-syn in dopaminergic neurons. Because copper homeostasis is deregulated in PD, it is of great significance to study the metal-binding site of wild-type α-syn (48-53, VVHGVA) and its pathological mutants (H50Q and G51D). Cyclic voltammetry and electrochemical impedance spectroscopy were used to monitor the formation of a peptide-PEG mixed layer on gold surfaces. Differential pulse voltammetry was used to detect and evaluate the interaction of copper(II) with the peptide layer. X-ray photoelectron spectroscopy was used to characterize the formation and attachment of the peptide layer on gold surfaces. Isothermal titration calorimetry was also utilized to evaluate the binding characteristics of the peptides with copper(II) ions. Our results indicated that the effect of a single amino acid mutation on the peptides drastically influenced their ability to interact with copper(II) ions. These results demonstrated that our electrochemical approach provided a rapid and cost-effective platform to study the strong interaction between α-syn and copper(II), which is implicated as one of the factors inducing structural changes in α-syn toward the progression of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b03612DOI Listing

Publication Analysis

Top Keywords

electrochemical detection
8
interaction copperii
8
metal-binding site
8
layer gold
8
gold surfaces
8
peptide layer
8
copperii ions
8
copperii
5
α-syn
5
electrochemical
4

Similar Publications

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Point of Care (POC) diagnosis provides an effective approach for controlling and managing Neglected Tropical Diseases (NTDs). Electrochemical biosensors are well-suited for molecular diagnostics due to their high sensitivity, cost-effectiveness, and ease of integration into POC devices. Schistosomiasis is a prominent NTD highly prevalent in Africa, Asia, and Latin America, with significant socioeconomic implications such as discrimination, reduced work capacity, or mortality, perpetuating the cycle of poverty in affected regions worldwide.

View Article and Find Full Text PDF

Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes.

View Article and Find Full Text PDF

Diabetes is a metabolic disorder caused by the body's inability to produce or use insulin. Considering the figures projected by the World Health Organization, research on insulin therapy is crucial. Hence, we present a soft biointerface based on a thiol-yne poly(ethylene glycol) (PEG) click-hydrogel as an advanced treatment option to administrate insulin.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!