Background: Approximately 70% of breast cancer patients have residual disease after neoadjuvant chemotherapy. This study was designed to determine whether breast cancer cells with stemlike properties are present in residual disease after neoadjuvant chemotherapy and whether they exhibit oncogenic mutations. The presence of breast cancer cells with stemlike properties with specific mutations may help explain the poor prognosis associated with residual disease.

Methods: A total of 68 breast cancer specimens were collected at the time of mastectomy or lumpectomy. A total of 44 were chemotherapy naïve and 24 were collected as residual disease after neoadjuvant chemotherapy. Tumor cells were collected by fluorescence-activated cell sorting, with breast cancer cells with stemlike properties specifically identified using breast stem cell associated antibodies. Whole tumor specimens and fluorescence-activated cell sorting breast cancer cells with stemlike properties were analyzed for genetic mutations, including PIK3CA.

Results: Breast cancer cells with stemlike properties, demonstrating EpCAM-positive, CD44-positive, CD49f, CD24 expression were present in chemotherapy-naïve tumors and residual disease. In both chemotherapy-naïve and residual disease specimens the highest frequency of PIK3CA mutations were detected in CD49f-CD24+ BCSCs (39% and 33%, respectively). PIK3CA mutations were detected in all stages of breast cancer (35%), in both chemotherapy naïve (39%) and residual disease (29%) and in both estrogen receptor positive (41%) and negative tumors (14%) (P = ns). Various PIK3CA mutations were identified in chemotherapy-naïve specimens versus residual disease specimens in both patient-paired and unpaired breast cancers.

Conclusion: Breast cancer cells with stemlike properties with mutations in PIK3CA were present in chemotherapy-naïve breast cancers and residual disease after neoadjuvant chemotherapy. These results demonstrate that neoadjuvant chemotherapy does not completely eradicate PIK3CA-defective breast cancer cells with stemlike properties. Although these findings may help explain the poor clinical outcomes in patients with residual disease, they also identify breast cancer cells with stemlike-property targets for therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.surg.2019.01.001DOI Listing

Publication Analysis

Top Keywords

breast cancer
44
residual disease
40
cancer cells
32
cells stemlike
28
stemlike properties
28
neoadjuvant chemotherapy
20
disease neoadjuvant
16
breast
15
cancer
12
pik3ca mutations
12

Similar Publications

A narrative review of sleep and breast cancer: from epidemiology to mechanisms.

Cancer Causes Control

December 2024

Department of Clinical Nutrition, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.

Breast cancer is the leading cause of cancer-related death and the most common cancer among women worldwide. It is crucial to identify potentially modifiable risk factors to intervene and prevent breast cancer effectively. Sleep factors have emerged as a potentially novel risk factor for female breast cancer.

View Article and Find Full Text PDF

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.

View Article and Find Full Text PDF

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!