The Perlin effect and its analog for fluorinated compounds (the fluorine Perlin-like effect) manifest on one-bond C─H (C─F for the fluorine Perlin-like effect) spin-spin coupling constants (SSCCs) in six-membered rings. These effects can be useful to probe the stereochemistry (axial or equatorial) of the C─H and C─F bonds, respectively. The origin of these effects has been debatable in the literature as being due to hyperconjugative interactions, dipolar effects, and induced current density. Accordingly, a variety of model compounds has been used to probe such effects since the cyclohexanone carbonyl group and the endocyclic heteroatom lone pairs play different roles on the above-mentioned effects. Thus, the J SSCC in fluorinated lactams and lactones were theoretically studied to gain further insight on the nature of the fluorine Perlin-like effect. In addition, because the intramolecular α-effect has recently gained attention for its importance in the reactivity and stereoelectronic interactions in peroxide compounds, some fluorinated 1,2-dioxanes and 1,2-dithianes were studied to evaluate the role of the α-effect on the behavior of J SSCCs. Differently from fluorinated ketones and ethers, the fluorine Perlin-like effect in the amides and esters cannot be explained by hyperconjugative or dipolar interactions alone, because the resonance in these groups affect the J values. The O─O and S─S-containing systems exhibit a strong fluorine Perlin-like effect, but unlike the α-effect, this behavior cannot be explained neither by hyperconjugation nor by dipolar interactions alone; the spatial proximity of the C─F and O─O/S─S bonds is proposed to affect the magnitude of the J SSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.4854 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!