A through year behavior of Cs in a Japanese flowering cherry tree in relation to that of potassium.

J Environ Radioact

Institute of Environmental Radioactivity of Fukushima University (IER), 1 Kanayagawa, Fukushima, Fukushima, 960-1296, Japan; Minamisoma City Hall, Odaka Ward Community Promotion Division, 2-28 Moto-machi Odaka, Minami Soma, Fukushima, 979-2195, Japan.

Published: June 2019

To understand the transfer of radiocesium (Cs) in inside of deciduous trees, changes in Cs activity concentrations, primarily derived from the Fukushima accident in March 2011, were observed in the upper parts of a Japanese flowering cherry tree (Prunus x yedoensis cv. Somei-Yoshino) between 2015 and 2018. The sampling of the foliar parts occurred over the entire leaf life span from winter bud to litterfall and those of the branches were distinguished based on emergence years (2017, 2016, 2015, 2014-2011, and 2010/before). First, every tissue demonstrated a clear seasonal variation in Cs activity concentration. Second, a synchrony of seasonal variations in Cs activity concentration with those in the biological analogue of K concentration was observed in foliar parts during their growth season, but not in branches nor during the other seasons. With respect to the timing of changes in each tissue with tree phenology, it is possible that K and Cs alternate between leaves and branches via the same translocation mechanisms. The resorption efficiencies (i.e., 1 - [the concentrations in the last litterfall]/[the maximum concentrations in green leaves]) of K and Cs were 76% and 46% in average, respectively. In addition, both leaf buds and branches played an important role as reservoirs during dormancy. The buds storage ratio before and after bud burst (i.e., [the inventories in buds at the end of defoliation]/[those before and after bud burst]) for K were 0.57 and 0.10 in median, respectively, and those for and Cs were 1.14 and 0.14 in median, respectively. Consequently, the transfer of Cs in inside of trees was still visible seven years after deposition, even though the annual reduction in Cs activity concentration was apparent in each tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2019.01.013DOI Listing

Publication Analysis

Top Keywords

activity concentration
12
japanese flowering
8
flowering cherry
8
cherry tree
8
foliar parts
8
year behavior
4
behavior japanese
4
tree relation
4
relation potassium
4
potassium understand
4

Similar Publications

Migration characteristics and toxic effects of perfluorooctane sulfonate and perfluorobutane sulfonate in tobacco.

Sci Total Environ

January 2025

National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Perfluorooctane sulfonate (PFOS) and its new substitute, perfluorobutane sulfonate (PFBS), are increasing in concentration in the environment annually, and their toxicity cannot be ignored. With an increasing amount of PFOS and PFBS entering the environment, especially into farmland soil, it is very likely to pollute tobacco-planting soil. Therefore, we chose tobacco (Nicotiana tabacum L.

View Article and Find Full Text PDF

Determination of Westcott g-factors for the assay of non-1/v nuclides using k-NAA.

Appl Radiat Isot

January 2025

Reactor Design Group, IGCAR, Kalpakkam, 603102, India.

This study examines the impact of the Westcott g-factor on the concentration of elements like In, Ir, Re, Yb, Eu and Lu, measured using neutron capture reactions (n,γ), specifically focusing on those reactions, whose thermal neutron capture cross-sections (σ ) deviate from the conventional '1/v' behaviour. These measurements are quantified using k₀-based neutron activation analysis. The Westcott g-factor for the non-1/v nuclides was calculated using the characterized neutron temperature (T) at PFTS irradiation channel of KAMINI reactor.

View Article and Find Full Text PDF

A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.

High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.

View Article and Find Full Text PDF

Objectives: Ulcerative colitis (UC) is characterized by colonic inflammation, with neutrophils playing a key role in UC activity, prognosis, and response to therapies. Current UC therapeutics can have significant side effects and limited efficacy. ADS051 is a novel, oral, gut-restricted small molecule that modulates neutrophil migration and activation without in vitro suppression of T-cell activation.

View Article and Find Full Text PDF

This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!