A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Receptor interacting protein kinases-dependent necroptosis as a new, potent mechanism for elimination of the endothelial cells during luteolysis in cow. | LitMetric

Necroptosis is an alternative form of programmed cell death regulated by receptor-interacting protein kinase (RIPK) 1 and 3-dependent. In the present study, to clarify if necroptosis in luteal endothelial cells (LECs) participates and contributes for bovine luteolysis, we investigated RIPK1 and RIPK3 localization in luteal tissue and their expression in cultured LECs after treatment with selected immune factors - mediators of luteolytic action of prostaglandin F2α (PGF). In addition, effects of tumor necrosis factor α (TNF; 2.3 nM) in combination with interferon γ (IFNG; 2.5 nM), and/or nitric oxide donor - NONOate (100 μM) on viability and CASP3 activity in the cultured LECs were investigated. Furthermore, effects of a RIPK1 inhibitor (necrostatin-1, Nec-1; 50 μM) on RIPKs and CASPs expression, were evaluated. Localization of RIPK1 and RIPK3 protein in the cultured LECs were determined. In cultured LECs, expression of RIPKs mRNA were up-regulated by TNF + IFNG at 12 h, and by PGF (1 μM) or NONOate at 24 h, respectively (P < 0.05). Although NONOate decreased cell viability, it prevented TNF + IFNG-stimulated CASP3 activity in cultured LECs. Nec-1 prevented TNF + IFNG-induced RIPK1 and CASP3 mRNA expression at 12 h and prevented RIPK3 mRNA expression. These findings suggest that RIPKs-dependent necroptosis which are induced by TNF + IFNG, PGF or NO could be potent mechanism responsible for LECs cell death and disappearance of luteal capillaries in regressing bovine CL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2019.01.035DOI Listing

Publication Analysis

Top Keywords

cultured lecs
16
endothelial cells
8
ripk1 ripk3
8
lecs
5
receptor interacting
4
interacting protein
4
protein kinases-dependent
4
kinases-dependent necroptosis
4
necroptosis potent
4
potent mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!