The success of cadmium phytoextraction operations with Noccaea caerulescens varies by a factor of 70 between sites of trials. However, soil factors driving the efficiency of cadmium (Cd) and zinc (Zn) phytoextraction are still poorly understood, as are the effects of nitrogen fertilizers. We studied biomass production and Cd and Zn uptake by two contrasting populations of N. caerulescens, Ganges (metallicolous) and Wilwerwiltz (non-metallicolous) grown in pots on a range of 24 field contaminated soils for 20 weeks. The addition of KNO and NHNO fertilizers was also tested. Using model averaging of multiple regression models, we show that the major drivers of N. caerulescens growth are physical soil factors such as organic matter and soil bulk density while trace metal accumulation mainly relies on soil Cd and Zn exchangeable concentrations. We confirm the negative effect of soil copper (Cu) on growth, even at exchangeable concentrations below 30 mg kg, and therefore on uptake efficiency, while increasing soil lead (Pb) content was related to increased biomass probably due to a protective effect against soil pathogens. Finally, there is a small positive effect of nitrogen fertilization on biomass production only in soils with low initial nitrogen content (under 25 μg g NO), while above this value, the positive impact of initial nitrogen content is offset by lower shoot Cd and Zn concentrations. Our data bring substantial information regarding the physico-chemical properties to ensure N. caerulescens growth: a soil bulk density under 1.05 kg/dm, organic matter above 7% and pH under 7.5. We show that phytoextraction efficiency is maximal for moderate soil contamination in Cd (2-10 mg kg) and Zn (300-1000 mg kg).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.02.073 | DOI Listing |
In this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.
View Article and Find Full Text PDFLand use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.
View Article and Find Full Text PDFSci Rep
December 2024
School of Environmental Science, The University of Shiga Prefecture, Hassakacho, Hikone, 2500, 522-8533, Japan.
Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!