The nested enzyme-within-enterocyte (NEWE) turnover model for predicting dynamic drug and disease effects on the gut wall.

Eur J Pharm Sci

Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom; Certara UK Ltd., Sheffield, United Kingdom.

Published: April 2019

Physiologically-based pharmacokinetic (PBPK) models provide a framework for in vitro-in vivo extrapolation of metabolic drug clearance. Many of the concepts in PBPK can have consequential impact on more mechanistic systems pharmacology models. In the gut wall, turnover of enzymes and enterocytes are typically lumped into one rate constant that describes the time dependent enzyme activity. This assumption may influence predictability of any sustained and dynamic effects such as mechanism-based inhibition (MBI), particularly when considering translation from healthy to gut disease. A novel multi-level systems PBPK model was developed. This model comprised a 'nested enzyme-within enterocyte' (NEWE) turnover model to describe levels of drug-metabolising enzymes. The ability of the model to predict gut metabolism following MBI and gut disease was investigated and compared to the conventional modelling approach. For MBI, the default NEWE model performed comparably to the conventional model. However, when drug-specific spatial crypt-villous absorption was considered, up to approximately 50% lower impact of MBI was simulated for substrates highly metabolised by cytochrome P450 (CYP) 3A4, interacting with potent inhibitors. Further, the model showed potential in predicting the disease effect of gastrointestinal mucositis and untreated coeliac disease when compared to indirect clinical pharmacokinetic parameters. Considering the added complexity of the NEWE model, it does not provide an attractive solution for improving upon MBI predictions in healthy individuals. However, nesting turnover may enable extrapolation to gut disease-drug interactions. The principle detailed herein may be useful for modelling drug interactions with cellular targets where turnover is significant enough to affect this process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2019.02.017DOI Listing

Publication Analysis

Top Keywords

model
9
newe turnover
8
turnover model
8
gut wall
8
gut disease
8
newe model
8
gut
6
turnover
5
disease
5
mbi
5

Similar Publications

Introduction: We assessed the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated socio-occupational factors among delivery riders from a Brazilian city at two time points during the pandemic.

Methodology: Surveys for antibody and viral RNA testing were conducted from November 2020 to January 2021, and from March to May 2021 in a group of 117 delivery riders. A questionnaire on socio-occupational characteristics and coronavirus disease 2019 (COVID-19) preventive measures was completed.

View Article and Find Full Text PDF

Introduction: To target psychological support to cancer patients most in need of support, screening for psychological distress has been advocated and, in some settings, also implemented. Still, no prior studies have examined the appropriate 'dosage' and whether screening for distress before cancer treatment may be sufficient or if further screenings during treatment are necessary. We examined the development in symptom trajectories for breast cancer patients with low distress before surgery and explored potential risk factors for developing burdensome symptoms at a later point in time.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!