Multiple-allele-inherited male sterility (MAMS) is important in Chinese cabbage (Brassica rapa L. ssp. pekinensis) breeding, but the molecular mechanisms leading to male sterility are poorly understood. In this study, we cloned a novel gene, BrSKS13, that is differentially expressed in fertile and sterile flower buds of Chinese cabbage. BrSKS13 is most similar to Arabidopsis thaliana AT3G13400 (SKS13) and encodes a predicted 61.87 kDa protein with three cupredoxin superfamily conserved domains in the multicopper oxidase family. Semi-quantitative reverse-transcription PCR (sqRT-PCR) showed that expression of BrSKS13 is higher in fertile buds than in sterile buds. Quantitative RT-PCR (qRT-PCR) and in situ hybridization showed that BrSKS13 is highly expressed in fertile anthers, peaking at pollen-maturation stage VI, but is weakly expressed in other tissues and floral organs. Expression patterns of BrSKS13 promoter::GUS reporter fusions in Arabidopsis showed that the BrSKS13 promoter drives expression of the GUS gene only in anthers. The relative expression of Brsks13 in fertile buds was higher than in sterile buds for all other MAMS lines of Chinese cabbage examined. These results suggest that BrSKS13 affects pollen development. In situ hybridization analysis of flower stigmas at different times after pollination showed that BrSKS13 expression was first observed in stigmas and immature seeds at 1 h after pollination, and the signal intensity in seeds increased with increasing maturity. Compared to Col-0, A. thaliana sks13 mutant plants have shorter and fewer siliques, shriveled pollen grains, pollen tube abnormalities, and reduced seed number. The phenotype of sks13 mutant was recovered by over-expressing BrSKS13. Our results suggest that BrSKS13 affects pollen development and the pollination/fertilization process, and will enable further study of the genetic mechanisms underlying MAMS in Chinese cabbage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2019.02.031 | DOI Listing |
J Integr Plant Biol
January 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Using an optimized CRISPR/Cas9 system to knock out the BTB-POZ and MATH domain gene BoBPM6 and the DOWNY MILDEW RESISTANCE 6 gene in Brassica oleracea resulted in new lines with broad-spectrum disease resistance.
View Article and Find Full Text PDFBreed Sci
September 2024
Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, Sendai, Miyagi 980-8572, Japan.
Turnip mosaic virus (TuMV) poses a major threat to crops like Chinese cabbage, causing significant economic losses. A viable and effective strategy to manage such diseases is by improvement of genetic-based viral resistance. To achieve this, it is important to have detailed and wide-ranging genetic resources, necessitating genetic exploration.
View Article and Find Full Text PDFMol Breed
February 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.
Unlabelled: Clubroot, caused by , is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the gene, crucial for CR.
View Article and Find Full Text PDFJ Oral Rehabil
January 2025
Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background: Oral frailty in older adults can affect their eating efficiency, prolonging meal times, which can compromise food flavour.
Objective: This study explored the association between cooking methods and chewing-to-swallowing time on the basis of different oral functions in older adults.
Methods: This cross-sectional study involved 65 community-dwelling individuals aged ≥ 65 years.
Plants (Basel)
January 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!