Cerebral blood flow disturbances lead to the massive death of brain cells. The death of >80% of cells is observed in hippocampal cell cultures after 40 min of oxygen and glucose deprivation (ischemia-like conditions, OGD). However, there are some populations of GABAergic neurons which are characterized by increased vulnerability to oxygen-glucose deprivation conditions. Using fluorescent microscopy, immunocytochemical assay, vitality tests and PCR-analysis, we have shown that population of GABAergic neurons are characterized by a different (faster) Ca dynamics in response to OGD and increased basal ROS production under OGD conditions. A plant flavonoid taxifolin inhibited an excessive ROS production and an irreversible cytosolic Ca concentration increase in GABAergic neurons, preventing the death of these neurons and further excitation of a neuronal network; neuroprotective effect of taxifolin increased after incubation of 24 h and correlated with increased expression of antiapoptocic and antioxidant genes Stat3 Nrf-2 Bcl-2, Bcl-xL, Ikk2, and genes coding for AMPA and kainate receptor subunits; in addition, taxifolin decreased expression of prooxidant enzyme NOS and proinflammatory cytokine IL-1β.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2019.01.005DOI Listing

Publication Analysis

Top Keywords

gabaergic neurons
16
neurons characterized
8
ros production
8
neurons
6
taxifolin
4
taxifolin protects
4
protects neurons
4
neurons ischemic
4
ischemic injury
4
injury vitro
4

Similar Publications

Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.

View Article and Find Full Text PDF

Molecular and cellular dynamics of the developing human neocortex.

Nature

January 2025

The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.

The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.

View Article and Find Full Text PDF

Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).

View Article and Find Full Text PDF

Regulation of neural stem cells by innervating neurons.

J Neurochem

January 2025

Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.

The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.

View Article and Find Full Text PDF

Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus.

Brain Struct Funct

January 2025

Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.

The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!