The cellular basis of fibrotic tendon healing: challenges and opportunities.

Transl Res

Department of Orthopedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York. Electronic address:

Published: July 2019

Tendon injuries are common and can dramatically impair patient mobility and productivity, resulting in a significant socioeconomic burden and reduced quality of life. Because the tendon healing process results in the formation of a fibrotic scar, injured tendons never regain the mechanical strength of the uninjured tendon, leading to frequent reinjury. Many tendons are also prone to the development of peritendinous adhesions and excess scar formation, which further reduce tendon function and lead to chronic complications. Despite this, there are currently no treatments that adequately improve the tendon healing process due in part to a lack of information regarding the contributions of various cell types to tendon healing and how their activity may be modulated for therapeutic value. In this review, we summarize recent efforts to identify and characterize the distinct cell populations involved at each stage of tendon healing. In addition, we examine the mechanisms through which different cell populations contribute to the fibrotic response to tendon injury, and how these responses can be affected by systemic factors and comorbidities. We then discuss gaps in our current understanding of tendon fibrosis and highlight how new technologies and research areas are shedding light on this clinically important and intractable challenge. A better understanding of the complex cellular environment during tendon healing is crucial to the development of new therapies to prevent fibrosis and promote tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545261PMC
http://dx.doi.org/10.1016/j.trsl.2019.02.002DOI Listing

Publication Analysis

Top Keywords

tendon healing
24
tendon
11
healing process
8
cell populations
8
healing
6
cellular basis
4
basis fibrotic
4
fibrotic tendon
4
healing challenges
4
challenges opportunities
4

Similar Publications

A motion-responsive injectable lubricative hydrogel for efficient Achilles tendon adhesion prevention.

Mater Today Bio

February 2025

Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, 071000, China.

Achilles tendon is a motor organ that is prone to tissue adhesion during its repair process after rupture. Therefore, developing motion-responsive and anti-adhesive biomaterials is an important need for the repair of Achilles tendon rupture. Here, we report an injectable lubricative hydrogel (ILH) based on hydration lubrication mechanism, which is also motion-responsive based on sol-gel reversible transmission.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.

Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.

View Article and Find Full Text PDF

The importance of the subscapularis tendon in reverse shoulder arthroplasty (RSA) has been increasingly emphasized lately. Recent studies have indicated that a repaired subscapularis tendon has better functional outcomes. This study is aimed at comparing the healing rate of repaired subscapularis tendons between onlay and inlay Bony Increased Offset-Reversed Shoulder Arthroplasty (BIO-RSA).

View Article and Find Full Text PDF

Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!