We introduce a novel method to form 3D biomimetic tissues from a droplet of a cell-extracellular matrix (ECM) mixture on a sensor stage and to quantify tissue force and stiffness as a function of time under optical microscopes. This method exploits advances in micro-nano fabrication and capillarity for self-assembly and self-alignment of tissues on the stage. It allows simultaneous investigation of the microstructure of the tissue in situ while its mechanical response is quantified, thus linking tissue biophysics with physiology and revealing structural-functional properties of 3D tissues. We demonstrate the functionality of the stage by studying the mechanical behavior of different cell-collagen mixtures under mechanical, chemical and electrical stimulation. This includes force evolution in cell-free collagen during curing, myotubes differentiated from muscle cell-collagen/Matrigel ECM subjected to electrical stimulation, and fibroblast-collagen tissue subjected to cancer cell conditioned media (CM) and a Rho-kinase inhibitor, Y27632. Muscle contraction decreases with increasing frequency of electrical stimulation, and fibroblasts respond to CM by increasing contractility for a short time and completely relax in the presence of Y27632 but restore force with Y27632 washout.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437030 | PMC |
http://dx.doi.org/10.1039/c8lc01273c | DOI Listing |
PLoS One
January 2025
Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.
View Article and Find Full Text PDFUrol Res Pract
January 2025
Department of Pharmacology, Ankara University, Faculty of Pharmacy, Ankara, Türkiye.
Objective: To investigate the effects of testosterone (T) treatment, with or without levothyroxine, the most widely used and least effective medication for managing hypothyroidism, on the functional and histological changes in propylthiouracil (PTU)- induced hypothyroid rat bladders.
Methods: Male rats (n=35) were split into control, hypothyroid, hypothyroid rats treated with levothyroxine (20 µg/kg/day, oral, 2-weeks), hypothyroid rats treated with Sustanon (10 mg/kg,iIM, once/week, 2-weeks), and hypothyroid rats treated with combined treatment groups. Hypothyroidism was induced by PTU (0.
Front Neurosci
January 2025
Department of Rehabilitation, Tianjin Hospital, Tianjin, China.
Background: Injuries to the common peroneal nerve often result in significant sensory and motor function loss, severely affecting patients' quality of life. Although existing treatments, including medication and surgery, provide some degree of efficacy, their effectiveness is limited by factors such as tolerance and adverse side effects.
Methods: This study aims to evaluate the effects of a 4-week regimen of mirror therapy combined with neuromuscular electrical stimulation on lower limb function, muscle strength, and sensation in patients with common peroneal nerve injuries.
Innovation (Camb)
January 2025
International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!