A new ReaxFF reactive force field has been developed for water-electrolyte systems including cations Li, Na, K, and Cs and anions F, Cl, and I. The reactive force field parameters have been trained against quantum mechanical (QM) calculations related to water binding energies, hydration energies and energies of proton transfer. The new force field has been validated by applying it to molecular dynamics (MD) simulations of the ionization of different electrolytes in water and comparison of the results with experimental observations and thermodynamics. Radial distribution functions (RDF) determined for most of the atom pairs (cation or anion with oxygen and hydrogen of water) show a good agreement with the RDF values obtained from DFT calculations. On the basis of the applied force field, the ReaxFF simulations have described the diffusion constants for water and electrolyte ions in alkali metal hydroxide and chloride salt solutions as a function of composition and electrolyte concentration. The obtained results open opportunities to advance ReaxFF methodology to a wide range of applications involving electrolyte ions and solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.8b10453 | DOI Listing |
J Mol Model
January 2025
Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
Context: Donor-acceptor (D-A) complexes, formed between two or more molecules held together by intermolecular forces, show interesting tunable properties and found applications in diverse fields, including semiconductors, catalysis, and sensors. In this study, we investigated the D-A complexes formed between perylene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and their chalcogen (S, Se) and fluorine derivatives. It was observed that interaction energies due to complex formation increase while the HOMO-LUMO gaps decrease with chalcogen substitutions.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.
An improvement in the computational efficiency of polarizable force field simulations is made through the development of a polarizable Drude water model, SWM3, in combination with the use of Lennard-Jones Particle Mesh Ewald (LJPME) for the treatment of long-range LJ interactions. The experimental bulk properties, density, heat of vaporization, dielectric constant, and self-diffusion constant of the SWM3 model are accurately replicated at ambient condition. The temperature dependence of the bulk properties is also captured except for the density.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.
Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.
Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
Controlling polarization states of ferroelectrics can enrich optoelectronic properties and functions, offering a new avenue for designing advanced electronic and optoelectronic devices. Here, ferroelectric semiconductor-based field-effect transistors (FeSFETs) are fabricated, where the channel is a ferroelectric semiconductor (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!