Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.

Chemphyschem

Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.

Published: April 2019

An anthraquinone (AQ)-based dimer and trimer linked by a triple bond (-C≡C-) were newly synthesized as active materials for the positive electrode of rechargeable lithium batteries. These synthesized oligomers exhibited an initial discharge capacity of about 200 mAh g with an average voltage of 2.2-2.3 V versus Li . These capacity values are similar to that of the AQ-monomer, reflecting the two-electron transfer redox per AQ unit. Regarding their cycling stability, the capacity of the monomer electrode quickly decreased; however, the electrodes of the prepared oligomers showed an improved cycling performance. In particular, the discharge capacities of the trimer remained almost constant for 100 cycles. A theoretical calculation revealed that the intermolecular binding energy can be increased to the level of a weak covalent bonding by oligomerization, which would be beneficial to suppress the dissolution of the organic active materials into the electrolyte solutions. These results show that the cycle-life of organic active materials can be extended without lowering the discharge capacity by the oligomerization of the redox active molecule unit.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201900012DOI Listing

Publication Analysis

Top Keywords

active materials
12
cycle-life organic
8
discharge capacity
8
organic active
8
anthraquinone-based oligomer
4
oligomer long
4
long cycle-life
4
organic electrode
4
electrode material
4
material rechargeable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!