A consolidated account of electrochemical determination of band structure parameters in II-VI semiconductor quantum dots: a tutorial review.

Phys Chem Chem Phys

Department of Chemistry, IIT Delhi, New Delhi 110016, India.

Published: February 2019

AI Article Synopsis

  • Understanding the absolute electronic energy levels in semiconductor quantum dots (Q-dots) is essential for designing devices that utilize their electronic band structure.
  • Electrochemical methods enable the examination of how size, shape, and composition affect band structure parameters, impacting stability in biological settings and applications in opto-electronic and photovoltaic devices.
  • This review aims to consolidate various electrochemical measurement techniques, compare existing studies, and provide an accessible protocol for determining the band structure of II-VI semiconductor Q-dots.

Article Abstract

Probing absolute electronic energy levels in semiconductor quantum dots (Q-dots) is crucial for engineering their electronic band structure and hence for precise design of composite nano-structure based devices. The use of electrochemistry has allowed us to investigate size, shape and composition dependent band structure parameters viz. the conduction band edge, valence band edge & quasi-particle gap and to establish novel charge induced phenomena in colloidal semiconductor Q-dots. The electrochemical behavior is also of special importance for the prediction of the stability of Q-dots in biological environments as well as for precise design of composite nanohetero-structures for opto-electronic (light emitting diodes) and photovoltaic (solar cells) applications. Several researchers have contributed to probing and predicting the positions of absolute energy levels of band edges and surface states as well as to the establishment of a potential window of stability for a wide variety of Q-dots both in aqueous media and in organic solution. The crucial point about these studies is that unlike spectroscopic methods, no unified approach has been followed and a variety of methods and protocols have been developed to carry out these measurements either on diffusing or thin films of Q-dots in different electrolyte media viz. aqueous, organic and ionic liquids, each having their own advantages over the others. However, a consolidated account of these methods and protocols is not available in the literature. The aim of this tutorial review is therefore to consolidate and compare the studies related to the determination of the band structure of II-VI semiconductor Q-dots through electrochemical measurements. A brief introduction to electrochemical techniques, especially cyclic voltammetry, is given, followed by a summary of experimental methods developed for these measurements. Finally, a concise protocol that can be easily applied universally and is attractive for other users dealing with semiconductor Q-dot based devices is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp06847jDOI Listing

Publication Analysis

Top Keywords

band structure
16
consolidated account
8
determination band
8
structure parameters
8
ii-vi semiconductor
8
semiconductor quantum
8
quantum dots
8
tutorial review
8
energy levels
8
precise design
8

Similar Publications

Ferguson Plot Analysis of Chaperone ClpB from Moderate Halophile.

Protein J

January 2025

Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.

The Ferguson plot is a simple method for determining the molecular weight of native proteins and their complexes. In this study, we tested the validity of the Ferguson plot based on agarose native gel electrophoresis using multimeric chaperone protein, ClpB, derived from a moderate halophile that forms a native hexamer. The Ferguson plot showed a single band with a molecular weight of 1,500 kDa, approximately twice the size of the native hexamer.

View Article and Find Full Text PDF

A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.

View Article and Find Full Text PDF

Aggregation-induced emission and absorption enhancement of mixed-valent rhenium oxide quantum dots by triethylamine: Implications for food safety monitoring.

J Hazard Mater

December 2024

Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:

Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.

View Article and Find Full Text PDF

Aims: Drug-refractory epilepsy (DRE) refers to the failure of controlling seizures with adequate trials of two tolerated and appropriately chosen anti-seizure medications (ASMs). For patients with DRE, surgical intervention becomes the most effective and viable treatment, but its success rate is unsatisfactory at only approximately 50%. Predicting surgical outcomes in advance can provide additional guidance to clinicians.

View Article and Find Full Text PDF

This paper presents a novel design approach for an anomalous reflector metasurface for communication systems operating at 8 GHz band. The main contribution of this work is the development of a general analytical method that accurately calculates the electromagnetic response of realistic metasurfaces with periodic impedance profiles. The modulated surface impedance is achieved by incorporating appropriately sized conductive patches on a grounded dielectric substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!