Probing absolute electronic energy levels in semiconductor quantum dots (Q-dots) is crucial for engineering their electronic band structure and hence for precise design of composite nano-structure based devices. The use of electrochemistry has allowed us to investigate size, shape and composition dependent band structure parameters viz. the conduction band edge, valence band edge & quasi-particle gap and to establish novel charge induced phenomena in colloidal semiconductor Q-dots. The electrochemical behavior is also of special importance for the prediction of the stability of Q-dots in biological environments as well as for precise design of composite nanohetero-structures for opto-electronic (light emitting diodes) and photovoltaic (solar cells) applications. Several researchers have contributed to probing and predicting the positions of absolute energy levels of band edges and surface states as well as to the establishment of a potential window of stability for a wide variety of Q-dots both in aqueous media and in organic solution. The crucial point about these studies is that unlike spectroscopic methods, no unified approach has been followed and a variety of methods and protocols have been developed to carry out these measurements either on diffusing or thin films of Q-dots in different electrolyte media viz. aqueous, organic and ionic liquids, each having their own advantages over the others. However, a consolidated account of these methods and protocols is not available in the literature. The aim of this tutorial review is therefore to consolidate and compare the studies related to the determination of the band structure of II-VI semiconductor Q-dots through electrochemical measurements. A brief introduction to electrochemical techniques, especially cyclic voltammetry, is given, followed by a summary of experimental methods developed for these measurements. Finally, a concise protocol that can be easily applied universally and is attractive for other users dealing with semiconductor Q-dot based devices is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp06847j | DOI Listing |
Protein J
January 2025
Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.
The Ferguson plot is a simple method for determining the molecular weight of native proteins and their complexes. In this study, we tested the validity of the Ferguson plot based on agarose native gel electrophoresis using multimeric chaperone protein, ClpB, derived from a moderate halophile that forms a native hexamer. The Ferguson plot showed a single band with a molecular weight of 1,500 kDa, approximately twice the size of the native hexamer.
View Article and Find Full Text PDFAMB Express
January 2025
Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:
Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
Aims: Drug-refractory epilepsy (DRE) refers to the failure of controlling seizures with adequate trials of two tolerated and appropriately chosen anti-seizure medications (ASMs). For patients with DRE, surgical intervention becomes the most effective and viable treatment, but its success rate is unsatisfactory at only approximately 50%. Predicting surgical outcomes in advance can provide additional guidance to clinicians.
View Article and Find Full Text PDFSci Rep
January 2025
Microwave Engineering Department, Electronics Research Institute (ERI) Cairo, Cairo, Egypt.
This paper presents a novel design approach for an anomalous reflector metasurface for communication systems operating at 8 GHz band. The main contribution of this work is the development of a general analytical method that accurately calculates the electromagnetic response of realistic metasurfaces with periodic impedance profiles. The modulated surface impedance is achieved by incorporating appropriately sized conductive patches on a grounded dielectric substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!