By looking at many studies describing the impact of ionizing irradiations in living mice on a few key detoxifying enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione transferase, we noted conflicting evidences: almost all papers finalized to demonstrate the protective effects of natural or synthetic drugs against the damage by irradiations, described also a relevant inactivation of these enzymes in the absence of these compounds. Conversely, no inactivation and even enhanced activity has been noted under similar irradiation modality in all studies supporting the "adaptive response". Motivated by these curious discrepancies, we performed irradiation experiments on living mice, explanted mouse livers and liver homogenates observing that, in all conditions the activity of all these enzymes remained almost unchanged except for a slight increase found in explanted livers. Our results put a question about many previous scientific reports in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368569PMC
http://dx.doi.org/10.1038/s41420-019-0148-8DOI Listing

Publication Analysis

Top Keywords

impact ionizing
8
detoxifying enzymes
8
living mice
8
ionizing irradiation
4
irradiation liver
4
liver detoxifying
4
enzymes
4
enzymes re-investigation
4
re-investigation studies
4
studies describing
4

Similar Publications

Background: Many studies have indicated an association between maternal occupational exposure to hazardous agents, such as anticancer drugs and ionizing radiation, and an increased risk of adverse pregnancy outcomes, including stillbirths or miscarriages and physical abnormalities in offspring. However, the effects of recent advancements in protective measures to reduce these risks have not been clarified. Aim To investigate the current impact of parental occupational exposure to anticancer drugs and ionizing radiation on stillbirths or miscarriages as well as physical abnormalities under the circumstances of the developed safety protocols.

View Article and Find Full Text PDF

Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).

View Article and Find Full Text PDF

Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing "functional food" rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions.

View Article and Find Full Text PDF

Advanced oxidation processes (AOPs), including ionizing radiation treatment, are increasingly recognized as an effective method for the degradation of pharmaceutical pollutants, including non-steroidal anti-inflammatory drugs (NSAIDs). Nabumetone (NAB), a widely used NSAID prodrug, poses an environmental risk due to its persistence in aquatic ecosystems and its potential toxicity to non-target organisms. In this study, the radiolytic degradation of NAB was investigated under different experimental conditions (dose rate, radical scavenging, pH, matrix effect), and the toxicity of its degradation products was evaluated.

View Article and Find Full Text PDF

Background: Radiotherapy is essential for the management of esophageal squamous cell carcinoma (ESCC). However, ESCC cells are highly susceptible to developing resistance to radiotherapy, leading to poor prognosis. Ursolic acid (UA) is a herbal monomer, has multiple medicinal benefits like anti-tumor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!