Background: More than 20% of the world's agricultural land is affected by salinity, resulting in multibillion-dollar penalties and jeopardising food security. While the recent progress in molecular technologies has significantly advanced plant breeding for salinity stress tolerance, accurate plant phenotyping remains a bottleneck of many breeding programs. We have recently shown the existence of a strong causal link between salinity and oxidative stress tolerance in cereals (wheat and barley). Using the microelectrode ion flux estimation (MIFE) method, we have also found a major QTL conferring ROS control of ion flux in roots that coincided with the major QTL for the overall salinity stress tolerance. These findings open new (previously unexplored) prospects of improving salinity tolerance by pyramiding this trait alongside with other (traditional) mechanisms.
Results: In this work, two high-throughput phenotyping methods-viability assay and root growth assay-were tested and assessed as a viable alternative to the (technically complicated) MIFE method using barley as a check species. In viability staining experiments, a dose-dependent HO-triggered loss of root cell viability was observed, with salt sensitive varieties showing significantly more damage to root cells. In the root growth assays, relative root length (RRL) was measured in plants grown in paper rolls under different HO concentrations. The biggest difference in RRL between contrasting varieties was observed for 1 mM HO treatment. Under these conditions, a significant negative correlation in the reduction in RRL and the overall salinity tolerance is reported.
Conclusions: These findings offer plant breeders a convenient high throughput method to screen germplasm for oxidative stress tolerance, targeting root-based genes regulating ion homeostasis and thus conferring salinity stress tolerance in barley (and potentially other species).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364415 | PMC |
http://dx.doi.org/10.1186/s13007-019-0397-9 | DOI Listing |
Protoplasma
January 2025
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India, 721302.
Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.
View Article and Find Full Text PDFEMBO Rep
January 2025
Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
Cyclic diguanosine monophosphate (c-di-GMP) is a ubiquitous bacterial secondary messenger with diverse functions. A previous Escherichia coli proteome microarray identified that c-di-GMP binds to the 23S rRNA methyltransferases RlmI and RlmE. Here we show that c-di-GMP inhibits RlmI activity in rRNA methylation assays, and that it modulates ribosome assembly in the presence of kanamycin.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Medicine, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.
View Article and Find Full Text PDFSci Rep
January 2025
College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.
View Article and Find Full Text PDFSci Rep
January 2025
Agricultural College of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia, China.
Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!