Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neutrophil extracellular traps (NETs) are immunogenic extracellular DNA structures that can be released by neutrophils upon a wide variety of triggers. NETs have been demonstrated to serve as an important host defense mechanism that traps and kills microorganisms. On the other hand, they have been implicated in diverse systemic autoimmune diseases. NETs are immunogenic and toxic structures that contain a pool of relevant autoantigens including anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) and systemic lupus erythematosus (SLE). Different forms of NETs can be induced depending on the stimulus. The amount of NETs can be quantified using different techniques including measuring DNA release in supernatants, measuring DNA-complexed with NET-molecules like myeloperoxidase (MPO) or neutrophil elastase (NE), measuring the presence of citrullinated histones by fluorescence microscopy, or flow cytometric detection of NET-components which all have different features regarding their specificity, sensitivity, objectivity, and quantity. Here is a protocol to quantify ex vivo NET formation in a highly-sensitive, high-throughput manner by using three-dimensional immunofluorescence confocal microscopy. This protocol can be applied to address various research questions about NET formation and degradation in health and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/59150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!