Download full-text PDF

Source
http://dx.doi.org/10.1016/S0099-2399(88)80262-0DOI Listing

Publication Analysis

Top Keywords

calcified structures
4
structures human
4
human dental
4
dental pulps
4
calcified
1
human
1
dental
1
pulps
1

Similar Publications

MARCH5 ameliorates aortic valve calcification via RACGAP1-DRP1 pathway associated mitochondrial quality control.

Biochim Biophys Acta Mol Cell Res

January 2025

Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China. Electronic address:

Background: Mitochondrial E3 ubiquitin ligase (MARCH5) as an important regulator in maintaining mitochondrial function. Our aims were to investigate the role and mechanism of MARCH5 in aortic valve calcification.

Methods: Human aortic valves, both calcified and non-calcified, were analyzed for MARCH5 expression using western blot.

View Article and Find Full Text PDF

Re-sheathing failure with Navitor during transcatheter aortic valve implantation: a case report.

Eur Heart J Case Rep

January 2025

The Second Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.

Background: Self-expanding valves used in transcatheter aortic valve implantation (TAVI) are designed to allow recapture and repositioning, facilitating optimal placement and mitigating conduction disturbances and paravalvular leakage. Here, we present a rare case in which the Navitor (Abbott Structural Heart, Santa Clara, CA, USA) could not be recaptured.

Case Summary: An 81-year-old Japanese woman with very severe aortic stenosis and a massively calcified nodule at the non-coronary cusp (NCC) underwent TAVI with a 25 mm Navitor valve.

View Article and Find Full Text PDF

A collagen-based laboratory model to mimic sex-specific features of calcific aortic valve disease.

Acta Biomater

January 2025

Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, QC H3A 0C5, Canada. Electronic address:

Calcific aortic valve disease (CAVD) shows in the deposition of calcium phosphates in the collagen-rich layer of the valve leaflets. This stiffens the leaflets and eventually leads to heart failure. Recent research suggests that CAVD follows sex-specific pathways: at the same severity of the disease, women tend to have fewer and less crystalline calcifications, and the phases of their calcifications are decidedly different than those of men; namely, dicalcium phosphate dihydrate (DCPD) - one of the mineral phases in CAVD - occurs almost exclusively in females.

View Article and Find Full Text PDF

Background: Adjacent bony structures may directly rub the carotid artery during swallowing or head and/neck movement. Long-term repeated stimulation might be considered to be a potential risk factor for carotid atherosclerotic plaque formation, development, and hazard. we defined the process as "Osteal Kneading".

View Article and Find Full Text PDF

Objectives: This study evaluates the performance of a clinical dual-source photon-counting computed tomography (PCCT) system in quantifying iodine within calcified vessels, using 3D- printed phantoms with vascular-like structures lined with calcium.

Methods: Parameters assessed include lumen diameters (4, 6, 8, 10, and 12 mm), phantom sizes (S: 20×20 cm, M: 25×25 cm, L: 30×40 cm, XL: 40×50 cm, representing the 99th percentile of US patient sizes), and iodine concentrations (2, 5, and 10 mg/mL). Scans were performed at radiation dose levels of 5, 10, 15, and 20 mGy to systematically evaluate iodine quantification accuracy and spectral imaging performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!