An odor sensor is a device for detecting target odors within a mixture, used in many fields including medical diagnosis. Electronic noses are networks of olfactory sensors, consisting of a surface whose properties are modified in the presence of odors, coupled with a measurement system. Their olfactory signature is analyzed in comparison with databases. Such portable devices can monitor body odors, e.g. in the breath, so as to reliably diagnose various pathologies at an early stage and non-invasively. It is tempting to use the naturally optimized molecular recognition of odorants and intrinsic sensitivity of the animal olfactory system to detect and discriminate minute amounts of odorants. New bioelectronic hybrid devices or "bioelectronic noses" can be designed by replacing the artificial sensory elements of e-noses by proteins naturally binding odorants, particularly olfactory receptors. As in the animal olfactory system, the detection and discrimination of odorants require a network of olfactory receptors. Prototypes of such miniaturized bioelectronic noses yield promising results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1051/medsci/2019001 | DOI Listing |
PLoS One
January 2025
Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom.
Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.
View Article and Find Full Text PDFAnim Biotechnol
December 2025
Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters.
View Article and Find Full Text PDFGenes Cells
January 2025
Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama, Japan.
Single-cell RNA-sequencing (scRNA-seq) is a powerful method to comprehensively overlook gene expression profiles of individual cells in various tissues, providing fundamental datasets for classification of cell types and further functional analyses. Here we adopted scRNA-seq analysis for the zebrafish olfactory sensory neurons which respond to water-borne odorants and pheromones to elicit various behaviors crucial for survival and species preservation. Firstly, a single-cell dissociation procedure of the zebrafish olfactory rosettes was optimized by using cold-active protease, minimizing artifactual neuronal activation.
View Article and Find Full Text PDFTheir keen noses are helping researchers uncover the diversity of the Pacific Northwest's underground fungi.
View Article and Find Full Text PDFJ Neurochem
January 2025
Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!