Lumped-parameter models are widely used by cardiovascular researchers in the analysis of the circulatory dynamics. However, portability and model exchange have always been a problem, with different researchers implement the model differently. To improve the situation, in this study, a group of lumped-parameter cardiovascular system models with different levels of complexity have been implemented using the CellML mark-up language. The models have been curated and made publicly available in the CellML model repository, and the purpose of this paper is to provide further technical details to support the usage of these models by the research community. The developed models are validated and tested under the OpenCell environment as part of the curation process. Simulation results agree well with typical published data on cardiovascular system response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03091902.2019.1576792 | DOI Listing |
Comput Biol Med
January 2025
Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.
The combination of extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) pose complex hemodynamic challenges in intensive care. In this study, a comprehensive lumped parameter model (LPM) is developed to simulate the cardiovascular system, incorporating ECMO and CRRT circuit dynamics. A parameter identification framework based on global sensitivity analysis (GSA) and multi-start gradient-based optimization was developed and tested on 30 clinical data points from eight veno-arterial ECMO patients.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Rm. 718, Philadelphia, PA, 19104, USA.
Purpose: Computational models of the cardiovascular system continue to increase in complexity. As more elements of the physiology are captured in multiscale models, there is a need to efficiently integrate subsystems. The objective of this study is to demonstrate the effectiveness of a coupling methodology, called functional mock-up interface (FMI), as applied to multiscale cardiovascular modeling.
View Article and Find Full Text PDFJ Physiol Sci
December 2024
Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Fenestration has been reported to enhance Fontan hemodynamics in several cases of Fontan circulation. However, the indication criteria for fenestration remain under discussion. To assess the effectiveness of fenestration in Fontan circulation, we conducted a theoretical analysis using a computational model of the fenestrated Fontan circulation.
View Article and Find Full Text PDFCardiovasc Eng Technol
December 2024
Department of Mechanical Engineering, Koc University, Rumeli Feneri Campus, Sarıyer, Istanbul, 34450, Turkey.
Purpose: Pulmonary atresia with intact ventricular septum is a multifactorial disease requiring complex surgeries. The treatment route is determined based on the right ventricle (RV) size, tricuspid annulus size and coronary circulation dependency of RV. Since multiple parameters influence the post-operative success, a personalized decision-making based on computed hemodynamics is hypothesized to improve the treatment efficacy.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
School of Public Health and Preventative Medicine, Monash University, Melbourne, VIC, Australia.
An aging population and an increasing incidence of cardiovascular risk factors form the basis for a global rising prevalence of valvular heart disease (VHD). Research to further our understanding of the pathophysiology of VHD is often confined to the clinical setting. However, in recent years, sophisticated computational models of the cardiovascular system have been increasingly used to investigate a variety of VHD states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!