The kinetics of ammonia ligation to atomic first and second row transition metal cations were measured in an attempt to assess the role of ligand field effects in gas-phase ion-molecule reaction kinetics. Measurements were performed at 295 ± 2 K in helium bath gas at 0.35 Torr using an inductively coupled plasma/selected-ion flow tube tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an inductively coupled plasma source and were allowed to decay radiatively and to thermalize by collisions with argon and helium atoms prior to reaction. A strong correlation was observed across the periodic table between the measured rate coefficients for ammonia ligation and measured/calculated bond dissociation energies. A similar strong correlation is seen with the ligand field stabilization energy. So ligand field stabilization energies should provide a useful predictor of relative rates of ligation of atomic metal ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1469066718800844 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).
View Article and Find Full Text PDFNature
January 2025
Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland.
Molecular recognition events between proteins drive biological processes in living systems. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, Chemistry, Xianlin 163Hao, Nanjing 210023, 210023, Nanjing, CHINA.
The simple and efficient conversion of carboxylic acids into structurally diverse organic molecules is highly desirable in chemical synthesis. This review covers recent developments in photocatalytic methodology for late-stage transformations of complex carboxylic acids and their derivatives enabled by radical decarboxylation and deoxygenation, highlighting some representative and significant contributions in this field. These advancements are categorized based on the reactivity patterns exhibited by the carboxylic acids.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!