Controlling the functional dynamics of DNA within living cells is essential in biomedical research. Epigenetic modifications such as DNA methylation play a key role in this endeavour. DNA methylation can be controlled by genetic means. Yet there are few chemical tools available for the spatial and temporal modulation of this modification. Herein, we present a small-molecule approach to modulate DNA methylation with light. The strategy uses a photo-tuneable version of a clinically used drug (5-aza-2'-deoxycytidine) to alter the catalytic activity of DNA methyltransferases, the enzymes that methylate DNA. After uptake by cells, the photo-regulated molecule can be light-controlled to reduce genome-wide DNA methylation levels in proliferating cells. The chemical tool complements genetic, biochemical, and pharmacological approaches to study the role of DNA methylation in biology and medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027477PMC
http://dx.doi.org/10.1002/anie.201901139DOI Listing

Publication Analysis

Top Keywords

dna methylation
24
dna
9
small-molecule approach
8
methylation
6
photo-responsive small-molecule
4
approach opto-epigenetic
4
opto-epigenetic modulation
4
modulation dna
4
methylation controlling
4
controlling functional
4

Similar Publications

Unlabelled: Cladribine indirectly downregulates methylation of DNA, RNA, and histones by blocking the transfer of methyl groups from -adenosyl-methionine. The cladribine and rituximab combination showed a synergetic effect in treating B-cell lymphomas. Bortezomib (Velcade) is a Food and Drug Administration (FDA)-approved proteasome inhibitor for treating mantle cell lymphoma (MCL).

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Silencing of STEAP3 suppresses cervical cancer cell proliferation and migration via JAK/STAT3 signaling pathway.

Cancer Metab

December 2024

Department of Obstetrics and Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China.

Article Synopsis
  • STEAP3 is a critical protein associated with cervical cancer (CC) progression, showing strong expression in CC tissues and linked to poor patient prognosis.
  • The study employed various methods, such as immunohistochemistry and RNA sequencing, to investigate STEAP3's role, revealing that lower methylation levels of STEAP3 are connected to worse outcomes.
  • Knockdown of STEAP3 in CC cells reduced their growth and invasion abilities while enhancing drug sensitivity, suggesting STEAP3 drives cancer cell activity through the activation of the JAK/STAT3 signaling pathway.
View Article and Find Full Text PDF

N6-methyladenosine regulates metabolic remodeling in kidney aging through transcriptional regulator GLIS1.

BMC Biol

December 2024

Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110001, China.

Background: Age-related kidney impairment, characterized by tubular epithelial cell senescence and renal fibrosis, poses a significant global public health threat. Although N6-methyladenosine (m6A) methylation is implicated in various pathological processes, its regulatory mechanism in kidney aging remains unclear.

Methods: An m6A-mRNA epitranscriptomic microarray was performed to identify genes with abnormal m6A modifications in aged human kidney tissues.

View Article and Find Full Text PDF

Single-cell DNA methylation measurements reveal genome-scale inter-cellular epigenetic heterogeneity, but extreme sparsity and noise challenges rigorous analysis. Previous methods to detect variably methylated regions (VMRs) have relied on predefined regions or sliding windows and report regions insensitive to heterogeneity level present in input. We present vmrseq, a statistical method that overcomes these challenges to detect VMRs with increased accuracy in synthetic benchmarks and improved feature selection in case studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!