The synthesis and structural determination of four tungsten alkyne complexes coordinated by the bio-inspired S,N-donor ligand 2-(4',4'-dimethyloxazoline-2'-yl)thiophenolate (S-Phoz) is presented. A previously established protocol that involved the reaction of the respective alkyne with the bis-carbonyl precursor [W(CO) (S-Phoz) ] was used for the complexes [W(CO)(C R )(S-Phoz) ] (R=H, 1 a; Me, 1 b; Ph, 1 c). Oxidation with pyridine-N-oxide gave the corresponding W-oxo species [WO(C R )(S-Phoz) ] (R=H, 2 a; Me, 2 b; Ph, 2 c). All W-oxo-alkyne complexes (2 a, b, c) were found to be capable of alkyne release upon light irradiation to afford five-coordinate [WO(S-Phoz) ] (3). The photoinduced release of the alkyne ligand was studied in detail by in situ H NMR measurements, which revealed correlation of the photodissociation rate constant (2 b>2 a>2 c) with the elongation of the alkyne C≡C bond in the molecular structures. Oxidation of [WO(S-Phoz) ] (3) with pyridine-N-oxide yielded [WO (S-Phoz) ] (4), which shows highly fluxional behavior in solution. Variable-temperature H NMR spectroscopy revealed three isomeric forms with respect to the ligand arrangement versus each other. Furthermore, compound 4 rearranges to tetranuclear oxo compound [W O (μ-O) (S-Phoz) ] (5) and dinuclear [{WO(μ-O)(S-Phoz)} ] (6) over time. The latter two were identified by single-crystal X-ray diffraction analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563718PMC
http://dx.doi.org/10.1002/chem.201805665DOI Listing

Publication Analysis

Top Keywords

photoinduced release
8
s-phoz r=h
8
s-phoz
6
alkyne
5
activation photoinduced
4
release alkynes
4
alkynes biomimetic
4
biomimetic tungsten
4
tungsten center
4
center photochemical
4

Similar Publications

Light induced release of cisplatin from Pt(IV) prodrugs is a promising tool for precise spatiotemporal control over the antiproliferative activity of Pt-based chemotherapeutic drugs. A combination of light-controlled chemotherapy (PACT) and photodynamic therapy (PDT) in one molecule has the potential to overcome crucial drawbacks of both Pt-based chemotherapy and PDT via a synergetic effect. Herein we report green-light-activated Pt(IV) prodrug GreenPt with BODIPY-based photosentitizer in the axial position with an incredible high light response and singlet oxygen generation ability.

View Article and Find Full Text PDF

Highly Selective AIEgen-Based "Turn On" Fluorescent Imaging for Inflammation Detection.

Luminescence

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.

Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.

View Article and Find Full Text PDF

To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.

View Article and Find Full Text PDF

The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.

View Article and Find Full Text PDF

Carbon Monoxide-Releasing Activity of Plant Flavonoids.

J Agric Food Chem

December 2024

Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic.

Flavonoids are naturally occurring compounds found in fruits, vegetables, and other plant-based foods, and they are known for their health benefits, such as UV protection, antioxidant, anti-inflammatory, and antiproliferative properties. This study investigates whether flavonoids, such as quercetin and 2,3-dehydrosilybin, can act as photoactivatable carbon monoxide (CO)-releasing molecules under physiological conditions. CO has been recently recognized as an important signaling molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!