Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Docosahexaenoic acid (DHA; 22:6n-3) is an n-3 (ω-3) fatty acid known for beneficial effects on body composition.
Objective: The objective of the study was to test the dose response of lean and fat mass to DHA in healthy growing female rats.
Methods: Female Sprague-Dawley rats (7 wk at baseline; n = 12/diet) were randomly assigned to receive a control (AIN-93M; 60 g soybean oil/kg diet) or experimental diet for 10 wk. Experimental diets contained 0.1%, 0.4%, 0.8%, or 1.2% DHA (wt:wt of total diet). Imaging for whole-body and abdominal composition was conducted using dual-energy X-ray absorptiometry and microcomputed tomography, respectively, at weeks 0, 5, and 10. Fatty acid profiles of several tissues were analyzed using gas chromatography. Serum leptin, C-reactive protein, and plasma insulin-like growth factor I concentrations were measured at each time point using immunoassays. Data were tested using Pearson's correlations and mixed-model ANOVA.
Results: No differences were observed in weight at baseline or food intake throughout the study. Overall, a 6% increase (P < 0.05) in whole-body and abdominal lean mass was observed in the 0.4%-DHA diet group compared with the control diet group. Moreover, the abdominal visceral fat mass was 31.4% lower in rats in the 0.4%-DHA than in the 1.2%-DHA diet group (P < 0.001). Rats in the 1.2%-DHA diet group showed greater percent differences in whole-body (32.5% and 40.6% higher) and in abdominal (33.9% and 49.4% higher) fat mass relative to the 0.1%- and 0.4%-DHA diet groups, respectively (P < 0.01). Accordingly, serum leptin concentration was lower in the 0.1%-DHA (38.2%) and 0.4%-DHA (43.8%) diet groups (P < 0.01) than in the 1.2%-DHA diet group and positively related to whole-body fat mass (r = 0.91, P < 0.0001).
Conclusion: Dietary DHA at 0.4% of dietary weight effectively enhances lean mass and proportionally reduces fat mass in growing female rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/nxy266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!